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Abstract—This paper studies computational models of the
coupling of intrinsic motivations and physiological maturational
constraints, and argues that both mechanisms may have complex
bidirectional interactions allowing the active control of the growth
of complexity in motor development which directs an efficient
learning and exploration process. First, we outline the Self-
Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity
algorithm (SAGG-RIAC) that instantiates an intrinsically moti-
vated goal exploration mechanism for motor learning of inverse
models. Then, we introduce a functional model of maturational
constraints inspired by the myelination process in humans, and
show how it can be coupled with the SAGG-RIAC algorithm,
forming a new system called McSAGG-RIAC2. We then present
experiments to evaluate qualitative and, more importantly, quan-
titative properties of these systems when applied to a 12DOF
quadruped controlled with 24 dimensions motor synergies.

I. CONSTRAINED LEARNING PROCESS

The learning capabilities given to biological systems are the
result of evolution. They allow the discovery and scaffolding of
new skills whose usefulness cannot be biologically anticipated.
As a process which begins in the first instants of life, learning
is guided by several intrinsic and extrinsic mechanisms and
is highly constrained by the evolving body plan of infants
and animals, as well as the increasing processing capabil-
ities of their brain. Several questions have been raised by
psychologists and neuroscientists about the learning process
and the formation of new know-how, but only a few explored
the complex bidirectional interactions between learning and
biological evolution. Infancy is indeed the period where the
maximum amount of information and know-how is learned,
but also when the human body evolves the most significantly.

The study proposed in this paper aims to show how com-
plex bidirectional interactions between the learning process
and constraints could produce the efficient progressive learn-
ing of numerous skills inside unbounded high-dimensional
spaces. We propose a qualitative and quantitative analysis
of the learning efficiency of McSAGG-RIAC2, an updated
version of the McSAGG-RIAC (Maturationally-Constrained
Self-Adaptive Goal Generation - Robust Intelligent Adaptive
Curiosity) algorithm that we previously introduced in [1]
and studied only in a qualitative manner. We introduce this
mechanism in the case of a 12DOF quadruped controlled with
motor synergies specified in 24 dimensions, which learns to
reach different positions, and evaluate the high potential of
McSAGG-RIAC2 to efficiently guide the learning process.

A. Intrinsic Motivation Systems

Intrinsic motivations systems have been shown as a potential
way to allow developmental robots to learn and discover new
skills autonomously and in an incremental manner [2], [3].
Studied as active learning algorithms [4], [5], they have been

shown as directing the emergence of developmental trajec-
tories allowing an efficient organized and constrained self-
exploration process. These mechanisms typically use meta-
models of performance of the learning process to guide the ex-
ploration in the most ”interesting” sensory-motor areas which
maximize the notion of informational gain (e.g. heuristics for
maximizing entropy, uncertainty, variance, prediction errors or
decrease in prediction errors) [3], [4], [6]. While numerous
heuristics are not robust to drive exploration in spaces where
some parts cannot be learned or where the noise is inhomo-
geneous [7], some of them (e.g. decrease in prediction errors)
have been shown to be efficient in such spaces [3], [8]–[10]

Nevertheless, all of these methods begin by a random and
sparse exploration of the whole space to discriminate areas
of different interests, which is an issue when considering
learning in unbounded spaces where typical developmental
robots evolve. This problem has been studied and partially re-
solved by competence based intrinsic motivation mechanisms
[11], [12], such as the Self-Adaptive Goal Generation Robust-
Intelligent Adaptive Curiosity (SAGG-RIAC) algorithm which
considers as interesting the local improvement of its com-
petence to reach high-level self-generated goals [13]. It also
addresses an issue typically existing in intrinsically motivated
algorithms such as the consideration of numerous ways to
perform the same task instead of a single way to perform
different tasks, by introducing high-level goals explicitly and
driving exploration at their level.

B. Biological Constraints
Biological constraints represent all kinds of internal aspect

of an embodiment which limits its access and interactions
with the environment [14]. They can be explained by both the
evolving structure of the brain of a learning agent as well as its
body, which have strong influences on the way it perceives,
acts, and interpret the environment where it evolves, hence
its learning process [15]. Depending on the characteristics
of its sensors, actuators and brain, an embodied system can
be assisted, limited and constrained in its learning process
from two different points of view: first, morphological and
computational limitations of an embodied system can be seen
as a way to delimit the environment accessible by an agent,
and reduce the size of its explorable sensorimotor space [16],
[17]. Second, prewired mechanisms present in the brain as
well as the structure of the embodiment by itself can allow
simplifications of both analysis of sensory data and control of
motor actions [18].

C. Toward a Co-Optimization and Bidirectional Relations
between Evolving Embodiment and Control

A growing number of studies began working on demonstrat-
ing how and why morphology and control should be coupled



(e.g., [19]–[21]). In this paper we argue that intertwining
the different kinds of constraints presented above can serve
as a basis for an open-ended learning framework. In the
following sections, we will first present the Self-Adaptive
Goal Generation RIAC algorithm (SAGG-RIAC) introduced
in [13] as an original approach to Competence Based Active
Motor Learning [11], [22], [23]. Then, we aim to show how
intertwining driving mechanisms and constraints can allow
efficient learning inside open-ended spaces of a maximum
amount of self-generated skills. Practically, we merge matura-
tional constraints and competence-based intrinsic motivations
and present the algorithm McSAGG-RIAC2 which uses bidi-
rectional interactions between these two processes in order
to carry out the continuous active control of the release of
constraints.

II. COMPETENCE BASED INTRINSIC MOTIVATION: THE
SELF-ADAPTIVE GOAL GENERATION RIAC ALGORITHM

A. Global Architecture
Let us consider the definition of competence based models

outlined in [22], and extract from it two different levels for
active learning defined at different time scales (see Fig. 1):

1) The higher level of active learning (higher time scale)
considers the active self-generation and self-selection of
goals, depending on feedback defined using the level of
achievement of previously generated goals.

2) The lower level of active learning (lower time scale)
considers the goal-directed active choice and active
exploration of lower-level actions to be taken to reach
the goals selected at the higher level, and depending on
local measures of the evolution of the quality of learned
inverse and/or forward models.
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Fig. 1. Global Architecture of the SAGG-RIAC algorithm.

B. Model Formalization
Let us consider a robotic system whose configurations/states

are described in both an actuator space S, and an opera-
tional/task space S′. For given configurations (s1, s

′
1) ∈ S×S′,

a sequence of actions a = {a1, a2, ..., an} allows a tran-
sition towards the new states (s2, s

′
2) ∈ S × S′ such that

(s1, s
′
1, a) ⇒ (s2, s

′
2). For instance, in the case of a robotic

manipulator, S may represent its actuator/joint space, S′ the
operational space corresponding to the cartesian position of its
end-effector, and a may be velocity or torque commands in
the joints.

SAGG-RIAC considers the reaching of goals from start-
ing states. Starting states are formalized as configurations
(sstart, s

′
start) ∈ S × S′ and goals as a desired s′g ∈ S′. All

states are considered to be potential starting states; therefore,
once a goal has been generated, the lower level of active

learning is always able to try to reach it by starting from the
current state of the system.

C. Lower Time Scale:
Active Goal Directed Exploration and Learning

The goal directed exploration and learning mechanism can
be carried out in numerous ways. Its main idea is to guide
the system toward the goal by executing low-level actions
which allow progressive exploration of the world and create a
model that may be reused afterwards. Its implementation has
to respect two imperatives :

1) A model (inverse and/or forward) has to be computed
during exploration and has to be available for a later
reuse, in particular when considering other goals.

2) A learning feedback mechanism has to be added such
that the exploration is active, and the selection of new
actions depends on local measures about the quality of
the learned model.

In the following experiment that will be introduced, we will
use an optimization algorithm. Other kinds of techniques,
for example ones based on natural actor-critic architectures
in model based reinforcement learning [24] or coming from
evolutionary robotics [25], could also be used.

D. Higher Time Scale:
Goal Self-Generation and Self-Selection

The Goal Self-Generation and Self-Selection process relies
on feedback defined using the concept of competence, and
more precisely on the competence improvement in given
regions (or subspaces) of the space where goals are chosen.
The measure of competence can be computed at different
instants of the learning process. First, it can be estimated once
a reaching attempt in direction of a goal has been declared as
terminated. Second, for robotic setups which are compatible
with this option, competence can be computed during low-
level reaching attempts. In the following, we detail these two
different cases.

1) Measure of Competence: We introduce a measure of
competence for a given goal reaching attempt as dependent
on two metrics: the similarity between the state s′f attained
when the reaching attempt has terminated, and the actual
goal s′g; and the respect of requirements ρ. These conditions
are represented by the function of similarity Sim defined in
[−∞; 0], such that the higher the Sim(s′g, s

′
f , ρ) will be, the

more a reaching attempt will be considered as efficient. From
this definition, we set a measure of competence γs′g directly
linked with the value of Sim(s′g, s

′
f , ρ):

γs′g =

{
Sim(s′g, s

′
f , ρ) if Sim(s′g, s

′
f , ρ) ≤ εsim < 0

0 otherwise
where εsim is a tolerance factor and Sim(s′g, s

′
f , ρ) > εsim

corresponds to a goal reached. We note that a high value of
γs′g (i.e. close to 0) represents a system that is competent in
reaching the goal s′g while respecting requirements ρ. A typical
instantiation of Sim, without requirements, is defined as
Sim(s′g, s

′
f , ∅) = −‖s′g − s′f‖2, and is the direct transposition

of prediction error in RIAC (which here refers to goal reaching
error [3], [10]).

Measuring competence during reaching attempts thus allows
taking advantage of every actions performed in order to
compute a measure of competence, and improves the quantity
of feedback send to the Goal Self-Generation mechanism.



2) Definition of Local Competence Progress: Let us con-
sider different measures of competence γs′i computed for
different attempted goals s′i ∈ S′, i > 1. For a subspace called
a region R ⊂ S′, we can compute a measure of competence
γ′′ that we call a local measure such that:

γ′′ =

(∑
s′j∈R

(γs′j )

|R|

)
, with |R|, cardinal of R

Let us now consider different regions Ri of S′ such that
Ri ⊂ S′,

⋃
iRi = S′ (initially, there is only one region

which is then progressively and recursively split; see below).
Each Ri contains attempted goals {s′t1 , s

′
t2 , ..., s

′
tk
}Ri and their

corresponding competences obtained {γs′t1 , γs′t2 , ..., γs′tk }Ri ,
indexed by their relative time order of experimentation t1 <
t2 < ... < tk|tn+1 = tn + 1 inside this precise subspace Ri
(ti are not the absolute time, but integer indexes of relative
order in the given subspace (region)).

An estimation of interest is computed for each region Ri.
The interest interesti of a region Ri is described as the
absolute value of the derivative of local competences inside
Ri, hence the local competence progress, over a sliding time
window of the ζ more recent goals attempted inside Ri:

CP (Ri) =

 |Ri|−
ζ
2∑

j=|Ri|−ζ

γs′
j

−
 |Ri|∑
j=|Ri|−

ζ
2

γs′
j


ζ

And interesti = |CP (Ri)|, where CP (Ri) represents the
Competence Progress inside Ri, using an absolute value to
define interesti being used to consider cases of increasing
and decreasing competence.

Indeed, an increasing competence signifies that the expected
competence gain in Ri is important. We deduce that, poten-
tially, selecting new goals in subspaces of high competence
progress could bring on the one hand a high information
gain for the learnt model, and on the other hand could lead
to the reaching of not already reached goals. We call this
phenomenon a positive intrinsic motivation.

Inversely, a decreasing competence in a region Ri means
that some goals have been well reached the first time, but
then the system has been less competent in reaching these
same goals, or others situated in the same region. It can
result from two different aspects of the considered region
Ri: first, different kinds of subregions are situated inside,
some where goals can be accomplished, and others where the
difficulty is too high according to the current learnt models;
second, previously reached goals have become more difficult
to achieve due to the release of constraints (described in the
next sections). In opposition to the description of increasing
competences, we define decreasing competences as providing
negative motivation.

3) Goal Self-Generation Using the Measure of Interest:
Using the previous description of interest, the goal self-
generation and self-selection mechanism has to carry out two
different processes:

1) Splitting of the space S′ where goals are chosen into
subspaces according to heuristics that allows maximal
discrimination of areas according to their levels of
interest;

2) Selecting the region where future goals will be chosen;
Such a mechanism has been described in the Robust-Intelligent
Adaptive Curiosity (R-IAC) algorithm introduced in [10].

Here, we use the same kind of methods such as a recursive split
of the space, each split being triggered once a maximal number
of goals has been attempted inside. Each split is performed
such that it maximizes the difference of the interest measure
described above in the two resulting subspaces. This allows
the easy separation of areas of different interests, and thus of
different reaching difficulty.

Finally, goals are chosen according to the following heuris-
tics which mixes three modes, once at least two regions exist
after an initial random exploration of the whole space:

1. mode(1): in p1% percent (typically p1 = 70%) of goal
selections. This algorithm chooses a random goal inside a
region which is selected with a probability proportional to its
interest value:

Pn =
interestn −min(interesti)∑|Rn|
i=1 interesti −min(interesti)

Where Pn is the selection probability of the region Rn, and
interesti corresponds to the current interest of the region
Ri.
2. mode(2): in p2% (typically p2 = 20% of cases), this
algorithm selects a random goal inside the whole space S′.
3. mode(3): in p3% (typically p3 = 10%), it first selects a
region according to the interest value (like in mode(1)) and
then generates a new goal close to the already experimented
one which received the lowest competence estimation.

III. BIOLOGICAL CONSTRAINTS
AND THE LEARNING PROCESS

Maturational constraints are considered as mechanisms
evolving over the human life-time, allowing the control of the
release of new capacities. While constraints are crucial for the
evolution of infants, an important question about maturational
constraints is how the maturational clock which determines
the release and access of new capabilities evolves. While
different studies about maturational constraints only considers
preprogrammed continuous clocks [17], or discrete release
depending on notions of learning saturation [26] or estimation
of success [27], no system allowing a continuous active control
of these constraints has been proposed in the literature.

In the following section, we present the Maturationally
Constrained Self-Adaptive Goal Generation RIAC algorithm
(McSAGG-RIAC2) as a mechanism for controlling the evolu-
tion of maturational constraints by using heuristics that come
from intrinsic motivations.

A. Maturational Constraints: the Role of Myelination
Maturational constraints play an important role in learning

by partially determining a developmental pathway. Numerous
biological reasons are part of this process such as the brain
maturity, the weakness of infants’ muscles or the development
of the physiological sensory system. In McSAGG-RIAC2 we
take functional inspiration of constraints induced by brain
maturation and especially by processes like myelination [28].

Related to the evolution of a substance called myelin,
usually qualified by the term white matter, the main impact
of myelination is to help the information transfer in the brain
by increasing the speed at which impulses propagate along
axons (connections between neurons). Here, we focus on the
myelination process for several reasons. This phenomenon can
indeed be considered as responsible for several maturational
constraints: first it affects the motor development by limiting
the frequency of feedback of electrical signals controlling



muscles; and second, it influences the processing of sensory
signals received by the brain, such as sounds and visual
images. By receiving an increasing amount of myelin over
time, the infant thus access to a body and environment
perceived with an increasing precision and thus complexity. In
this study we consider only such increase in the physiological
development, analysis of potential decrease which can arise
over the development as proposed in [29] will be studied in
future works.

In the following formalization, we consider constraints
analogous to those induced by the myelination process, and
propose a mechanism linking competence based intrinsic mo-
tivations with a maturational clock modeling the evolution of
myelin responsible for the progressive release of constraints.

B. Formalization of Constraints
It is important to notice the multi-level aspect of matura-

tional constraints: constraints existing on motor actions which
influence the control, and by analogy in McSAGG-RIAC2,
the efficiency of the low-level active selection of actions
performed to reach a goal; and constraints related to sensors
like the capacity to perceive and discriminate objects, and thus
here, to select a goal and/or declare it as reached.

Inspired by the increase of myelin appearing in the brain,
we declare an evolving term ψ(t) as a maturational clock
responsible for the lifting of constraints. The main problem
raised is to define a measure to control the evolution of
this clock. For instance, in the Lift-Constraint, Act, Saturate
(LCAS) algorithm [26], the authors use a simple discrete
criteria based on a saturation threshold. They consider a
robotic arm whose end-effector’s position is observed in a
task space. This task space is segmented into spherical regions
of specified radius used as output for learning the forward
kinematics of the robot. Each time the end-effector explores
inside a spherical region, this region is activated. Once every
region is activated, saturation occurs, and the radius of each
region decreases so that the task space becomes segmented
with a higher resolution and allows a more precise learning of
the kinematics.

In the following section, we define a measure based on
the competence progress which allows continuously and non-
linearly controlling the maturational clock.

C. Stage Transition: Maturational Evolution and Intrinsic
Motivations

The first version of McSAGG-RIAC introduced in [1]
defines the evolution of the maturational clock as directly
proportional to the global level of positive motivation. This
leads the robot to potentially face with an overly complex
environment, while sometimes releasing important quantities
of constraints before the robot has managed to master the
currently perceived environment. The measure of interest of
SAGG-RIAC was also only defined using positive motivation
(the absolute value defining the interest was not used), which
prevents going back inside regions already visited, but where
the release of constraints changed the level of complexity. In
McSAGG-RIAC2 we tackle these two issues and propose a
robust definition of the release of constraints.

The main principle of bidirectional interactions between
maturational constraints and learning in McSAGG-RIAC2 is
to increase ψ(t) (lifting constraints) when the system is in
a phase of decrease of its global intrinsic motivation, after

having been positively motivated. Formally, it corresponds
to periods of stabilization of the global competence level
(estimation without consideration of regions), after a phase of
progression (see Fig. 2). This stabilization is shown by a low
derivative of the averaged competence level computed in the
whole goal space S′ in a recent time window [tn− ζ2

, tn] and
the progression corresponds to an increase of these levels in a
preceding time window [tn−ζ , tn− ζ2

]. Therefore, considering
competence values estimated for the ζ last reaching attempts
{γs′n−ζ , ..., γs′n}S′ , ψ(t) evolves until reaching a threshold
ψmax such that:
ψ(t+ 1) = ψ(t) +min

(
maxevol;

λ

CP ({γs′
n−ζ/2

, ..., γs′n})

)

if
{

0 < CP ({γs′
n−ζ/2

, ..., γs′n}) < maxCP
CP ({γs′n−ζ , ..., γs′n−ζ/2}) > 0

and ψ(t+ 1) = ψ(t) otherwise, where maxevol is a threshold
limiting a too rapid evolution of ψ, maxCP a threshold
defining a stable competence level, and λ a positive factor.
As the global evolution of the interest in the whole space
is typically non-stationary, the maturational clock becomes
typically non-linear and stops its progression when the global
average of competence decreases. This decrease is due to the
lifting of constraints, which increases the complexity of the
perceived world.
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CP > 0 CP > 0
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Fig. 2. Periods of evolution of the maturational clock ψ(t) according to the
evolution of the global competences.
D. Constraints Implementation

Maturational and morphological constraints can be de-
scribed as genetically coded processes and can thus be defined
as having emerged thanks to some evolutionary processes. Tra-
ditional mechanisms which carry out evolutionary processes
use a fitness function which represent a precise goal that have
to be optimized by a genetic/optimization algorithm. Here,
we would like to consider robots that are able to learn high
quantities of skills. Therefore, such a function cannot consider
precise goals, but more the capability of the system to attain
a maximal amount of goals.

In the following experiments, the evolution of constraints
function of the maturational clock is handcrafted in order to
show that bidirectional interactions between maturational con-
straints and learning allows the improvement of the efficiency
of the learning and exploration processes.

IV. EXPERIMENT WITH A QUADRUPED ROBOT

A. Robotic Setup
In the following experiment, we consider a quadruped robot

(see Fig. 3). Each of its legs is composed of 2 joints, the first
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Fig. 3. Representation of the 12DOF quadruped, and measures used for the
computation of competences: the goal and reached positions in (u, v, θ).

(closest to the robot’s body) is controlled by two rotational
DOF, and the second, one rotation (1 DOF). Each leg therefore
consists of 3 DOF; the robot having in its totality 12 DOF. This
robot is controlled using motor synergies Υ which directly
specify the phase and amplitude of a sinusoid which controls
the precise rotational value of each DOF over time [30].
These synergies are parameterized using a set of 24 continuous
values, 12 representing the phase ph of each joint, and the 12
others, the amplitude am: Υ = {ph1,2,..,12; am1,2,..,12}. Each
experimentation consists of launching a motor synergy Υ for a
fixed amount of time, starting from a fixed position. After this
time period, the resulting position xf of the robot is extracted
into 3 dimensions: its position (u, v), and its rotation θ. The
correspondence Υ → (u, v, θ) is then kept in memory as a
learning exemplar.

The three dimensions u, v, θ are used to define the goal
space of the robot and it is important to notice that precise
areas reachable by the quadruped cannot be estimated before-
hand. In the following experiment, we set the original dimen-
sions of the goal space to [−45; 45] × [−45; 45] × [−2π; 2π]
on axis (u, v, θ), which was a priori larger than the reachable
space. Then, after having carried out numerous experimenta-
tions, it appeared that this goal space was actually more than
25 times the size of the area accessible by the robot (see red
contours in Fig. 4 where the reachable space is shown as inside
[−10; 10]× [−10; 10]× [−2π; 2π]).

The implementation of our algorithm in such a robotic setup
aims to test if the McSAGG-RIAC2 driving method allows
the robot to learn to attain a maximal amount of reachable
positions, avoiding the selection of many goals inside regions
which are unreachable, or that have previously been visited.

B. Measure of competence
In this experiment, we focus on the precise reaching of goal

positions xg = (ug, vg, θg). In every iteration the robot is
reset to the same configuration called the origin position. We
define the similarity function Sim and thus the competence
as linked with the euclidian distance goal/robot D(xg, xf )
after a reaching attempt which is normalized by the original
distance between the origin position xorigin and the goal
D(xorigin, xg). This allows, for instance, the same compe-
tence level when considering a goal at 1km from the origin
position which the robot approaches at 0.1km, and a goal at
100m which the robot approaches at 10m.

In this measure of competence, we consider the rotation fac-
tor θ, and compute the euclidian distance using (u, v, θ). Also,
dimensions of the goal space are rescaled within [0;1]. Each

dimension therefore has the same weight in the estimation of
competence (an angle error of θ = 1

2π is as important as an
error u = 1

90 or v = 1
90 ). We formalize the similarity measure

as the following: Sim(xg, xf , xstart) = − D(xg,xf )
D(xstart,xg)

where
Sim(xg, xf , xstart) = 0 if D(xstart, xg) = 0.

C. Local Exploration and Reaching

Reaching a goal xg necessitates the estimation of a motor
synergy Υi leading to this chosen state xg . Considering a
single starting configuration for each experimentation, and
motor synergies Υ, the forward model which defines this
system can be written as Υ → (u, v, θ). Here, we have a
direct relationship which only considers the 24 parameters
{ph1,2,..,12; am1,2,..,12} as inputs of the system, and a position
in (u, v, θ) as output. Also, when considering the inverse
model (u, v, θ) → Υ that has to be estimated, we use the
following optimization mechanism which can be divided into
two different phases: a reaching phase, and an exploration
phase.

1) Reaching Phase: The reaching phase deals with
reusing the data already learned to compute an inverse
model ((u, v, θ) → Υ)L in the locality L of the intended
goal xg = (ug, vg, θg). In order to create such an inverse
model (numerous can exist), we extract the potentially more
reliable data using the following method: we first compute
the set L of the l nearest neighbors of (ug, vg, θg) and their
corresponding motor synergies using an ANN (Approximate
Nearest Neighbors) method:
L = {{u, v, θ,Υ}1, {u, v, θ,Υ}2, ..., {u, v, θ,Υ}l}. Then, we
consider the set M which contains l sets of m elements:
M = {{u, v, θ,Υ}1, {u, v, θ,Υ}2, ..., {u, v, θ,Υ}m}1,2,..,l
where each set {{u, v, θ,Υ}1, {u, v, θ,Υ}2, ..., {u, v, θ,Υ}m}i
corresponds to the m nearest neighbors of each Υi, i ∈ L,
and their corresponding resulting position (u, v, θ).

Finally, we select the set O =
{{u, v, θ,Υ}1, {u, v, θ,Υ}2, ..., {u, v, θ,Υ}m} inside M
such that it would be the one with the lowest standard
deviation of its synergies in M . From O, we estimate a linear
inverse model ((u, v, θ) → Υ) by using a pseudo-inverse of
Moore-Penrose, and obtain the synergy Υg which corresponds
to the desired goal (ug, vg, θg).

2) Exploration Phase: The system here continuously esti-
mates the distance between the goal xg and the closest already
reached position xc. If the reaching phase does not manage
to make the system come closer to xg , i.e. D(xg, xt) >
D(xg, xc), with xt as last experimented configuration in an
attempt toward xg , the exploration phase is triggered.

In this phase the system first considers the nearest
neighbor xc = (uc, vc, θc) of the goal (ug, vg, θg) and
get the corresponding known synergy Υc. Then, it
adds a random noise rand(24) to the 24 parameters
{ph1,2,..,12, am1,2,..,12}c of this synergy Υc which
is proportional to the euclidian distance D(xg, xc).
The next synergy Υt+1 = {ph1,2,..,12, am1,2,..,12}t+1

to experiment can thus be described as Υt+1 =
({ph1,2,..,12, am1,2,..,12}c + λ.rand(24).D(xg, xc)) where
rand(i) is a vector of i random values in [−1; 1], λ > 0
and {ph1,2,..,12, am1,2,..,12}c the motor synergy which
corresponds to xc.



Fig. 4. Histograms of positions explored by the quadruped inside the goal space u, v, θ after 10000 experimentations (running a motor synergy during a
fixed amount of time), using different exploration mechanisms.

D. Constraining the Goal Space

The goal space starts as a small sphere centered around the
position (u, v, θ) = (0, 0, 0) which corresponds to the origin
position where the quadruped starts each displacement. Then,
according to the evolution of the maturational clock, the radius
of this sphere increases, until it covers the entire goal space.

E. Constraining the Control Space

Due to the high number of parameters controlling each mo-
tor synergy, the learning mechanism faces a highly redundant
system. Also, because our framework considers the fact of
performing a maximal amount of tasks (i.e. goals) instead of
different ways to perform a same task as important, constraints
on the control space can be considered.

Let us consider the 24 dimensional space controlling phases
and amplitudes as defined as S = [−2π; 2π]12×[0; 1]12. We set
the constrained subspace where possible values can be taken
as [µi − 4πσ;µi + 4πσ]12 × [µj − σ;µj + σ]12 ∈ S, where
µ corresponds to a seed, different for each dimension, around
which values can be taken according to a window of size 2σ;
σ varying according to the maturational clock ψ(t).

We aim to show the potential increase of efficiency of the
learning process that can arise thanks to the coupling of con-
straints in the control and goal spaces. To reveal this increase,
we do not need to optimize the value of each seed according
to complex mechanism. In this experiment, we handcrafted
the value of each seed according to the simple following
rule: first, we run an experiment only using constraints in
the goal space. Once this experiment terminated, we compute
histograms of phases and amplitude experimented with during
the exploration process. Then, the seed selected for each di-

mension corresponds to the maximum of the histogram, which
represents the majority value used during this experiment.

F. Qualitative Results
In [13], we presented only qualitative results while using an

early version called McSAGG-RIAC with a robotic arm. We
showed the self-adaptive behavior of the algorithm, which is
able to actively accelerate and slow down the evolution of the
maturational clock when considering constraints whose release
evolves with different velocities. In the following section,
we propose qualitative and quantitative analysis with a new
robotic setup, whose limits of reachability are impossible
to predict in advance, contrary to the experiment presented
in [13]. For each experiment, we verify that the release of
constraints is developed enough in order to cover the whole
reachable area at the end of the experiment. This permits
performing rigorous comparisons with methods which do not
use constraints.

Fig. 4 (a), presents representative examples of histograms
of positions explored by the quadruped inside the goal space
u, v, θ after 10000 experimentations (running of motor syner-
gies during the same fixed amount of time), and (b) shows
examples of the repartitions of positions inside the goal
space after 10000 experimentations when using the following
exploration mechanisms:

ACTUATOR-RANDOM corresponds to a uniform selection
of parameters controlling motor synergies (values inside the 24
dimensional space of phases and amplitudes). ACTUATOR-
RIAC corresponds to the original version of the R-IAC al-
gorithm presented in [10] which actively generates actions
inside the same space of synergies as ACTUATOR-RANDOM.
SAGG-RANDOM is a method where the learning is situated at



the level of goals which are generated uniformly in the goal
space u, v, θ. Here the low-level of active learning used is
the same as in SAGG-RIAC. Then, the SAGG-RIAC method
corresponds to the self-generation of goals actively inside
the whole goal space while McSAGG-RIAC2 also considers
maturational constraints in both control and goal spaces.

Comparing the two first exploration mechanisms
(ACTUATOR-RANDOM and ACTUATOR-RIAC) we
cannot distinguish any notable difference, the space explored
appears similar and the extent of explored space on the (u, v)
axis is comprised in the interval [−5; 5] for u and [−2.5; 2.5]
for v on both graphs. Nevertheless, these results are important
when comparing histograms of exploration (Fig. 4 (a)) and
visited positions (Fig. 4 (b)) to the size of the reachable
area (red lines on Fig. 4). It indeed shows that, in the 24
dimensional space controlling motor synergies, an extremely
large part of values lead to positions close to (0, 0, 0), and
thus do not allow the robot to perform a large displacement.
It allows the deduction that reaching the entire goal space is
a difficult task which could be discovered using exploration
in the space of motor synergies only after extremely long
time periods. Moreover, we notice that the difference between
u and v scales is due to the inherent structure of the robot
which simplifies the way to go forward and backward rather
than shifting left or right.

Considering SAGG methods, it is important to note the dif-
ference between the reachable area and the goal space. In Fig.
4, red lines correspond to the estimated reachable area which is
comprised of [−10; 10]×[−10; 10]×[−π;π], whereas the goal
space is much larger: [−45; 45] × [−45; 45] × [−2π; 2π]. We
are also able to notice the asymmetric aspect of its repartition
according to the v axis, which is due to the decentered weight
of the robot’s head.

The SAGG-RANDOM method seems to slightly increase
the space covered on the u and v axis compared to AC-
TUATOR methods, as shown by the higher concentration
of positions explored in the interval [−5;−3] ∪ [3; 5] of u.
However, this change does not seem very important when
comparing SAGG-RANDOM to any previous algorithm.

SAGG-RIAC, contrary to SAGG-RANDOM, shows a large
exploration range compared to other methods: the surface in
u has almost twice as much coverage than using previous
algorithms, and in v, up to three times; there is a maximum
of 7.5 in v where the previous algorithms were at 2.5. These
last results emphasize the capability of SAGG-RIAC to drive
the learning process inside reachable areas which are not
easily accessible (hardly discovered by chance). Nevertheless,
when observing histograms of SAGG-RIAC, we can notice
the high concentration of explored positions around (0, 0, 0),
the starting position where every experimentation is launched.
This signifies that, even if SAGG-RIAC is able to explore a
large volume of the reachable space, as shown in Fig. 4 (b),
it still spends many iterations exploring the same areas.

According to the repartition of positions shown in Fig. 4
(b) for the McSAGG-RIAC2 exploration mechanism, we can
first notice a volume explored comparable to the one explored
by SAGG-RIAC. Nevertheless, it seems that McSAGG-RIAC2

visits a slightly lower part of the space, avoiding some areas,
while explored area seems to be visited with a higher concen-
tration. This higher concentration is confirmed via observation
of histograms of McSAGG-RIAC2; indeed, whereas every
other method focuses a large part of their exploration time

around the position (0, 0, 0), McSAGG-RIAC2 also focuses in
areas distant from this position. The higher attraction toward
different areas is due to the fixation of constraints in the goal
space: limiting the goal space allows a fast focalization of the
algorithm toward reachable goals, whereas without constraints,
the system spends large amounts of time attempting unreach-
able goals before discriminating reachable areas, and thus
performs movements which have a high probability of leading
to positions close to (0, 0, 0) according to the kinematics of
the system. Also, areas visited a few times such as the upper
right part of the third graph of McSAGG-RIAC2 Fig. 4 (b),
can be explained by the high focalization of McSAGG-RIAC2

in other areas, as well as the constraints limiting the values
taken in the 24 dimensional control space.

G. Quantitative Results
In this section, we aim to test the efficiency of the learned

database to guide the quadruped to reach a set of goal
positions. Here we consider a test database of 100 goals
and compute the distance between each goal attempted, and
the reached position. Fig. 5 shows performances of methods
introduced previously. Also, in addition to the evaluation of the
efficiency of McSAGG-RIAC2 with constraints in both control
and goal spaces (called McSAGG-RIAC2 In&Out in Fig. 5),
we introduce the evaluation of McSAGG-RIAC2 when only
using constraints on the goal space (McSAGG-RIAC2 Out).
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Fig. 5. Reaching errors estimated using different databases collected with
different exploration methods on a over 10 quadruped experiments of 10000
actions.

First of all, we can observe the higher efficiency of SAGG-
RIAC compared to the other three methods which can be ob-
served after only 1000 iterations. The high decreasing velocity
of the reaching error (in the number of experimentations) is
due to the consideration of regions limited to a small number
of elements (30 in this experiment). It allows the creation of
a very high number of regions within a small interval of time,
which helps the system to discover and focus on reachable
regions and its surrounding area.

ACTUATOR-RIAC shows slightly more efficient perfor-
mances than ACTUATOR-RANDOM. Also, even if SAGG-
RANDOM is less efficient than SAGG-RIAC, we can observe
its highly decreasing reaching errors compared to ACTUATOR
methods, which allows it to be significantly more efficient than
these method when considered at 10000 iterations.



McSAGG-RIAC2 Out shows better results than SAGG-
RIAC since the beginning of the evolution (1000 iterations),
and decreases with a higher velocity until the end of the
experiment. This is due to the fast discovery of reachable
areas (showed in Fig. 4 (a)) which reduces the exploration
of synergies leading to positions close to (0, 0, 0), and leads
to a more uniform exploration inside the reachable space.
This emphasizes first the high potential of coupling constraints
situated in the goal space and SAGG-RIAC in such a complex
robotic setup.

Eventually, we can observe that coupling constraints in both
control and goal spaces as introduced by McSAGG-RIAC2

In & Out, obtains significantly more efficient results than
SAGG-RIAC without constraints (p = 0.0055 at the end of
the exploration process), and better than when only using
constraints in the goal space with a measure of significance of
p = 0.05. Constraining the 24 dimensional space which con-
trols motor synergies thus allows an important simplification
of the learning process, while allowing the efficient reaching
of a number of goals as important as without constraints.

In such a highly-redundant robot, coupling different types of
constraints with the SAGG-RIAC process thus obtains signifi-
cantly better performances than when using the SAGG-RIAC
competence based intrinsic motivation algorithm without it.
This one being significantly more efficient than the other
methods proposed, including the original RIAC algorithm.

These experiments emphasize the high efficiency of meth-
ods which drive the exploration at the level of goals. SAGG
methods, and especially SAGG-RIAC, permit driving the
exploration in order to explore large spaces containing areas
hardly discovered by chance, when limits of reachability
are impossible to predict. Then, thanks to the fixation of
constraints in the goal space, McSAGG-RIAC2 manages to
direct the exploration more uniformly than SAGG-RIAC.

Eventually, quantitative results showed the capability of
SAGG-RANDOM and SAGG-RIAC methods to learn inverse
models efficiently when considering highly-redundant robotic
systems controlled with motor synergies. Then, the high focal-
ization of McSAGG-RIAC2 in areas visited a few by SAGG-
RIAC results in a improved learning efficiency.

V. CONCLUSION

In this paper we argued that intrinsic motivations and
maturational constraints mechanisms might have complex
bidirectional interactions which actively control the growth of
complexity in motor development. We proposed an integrated
system of these two frameworks which allows a robot to
developmentally learn its inverse model progressively and
efficiently, and presented qualitative and quantitative results
showing the high potential of the McSAGG-RIAC2 algorithm
to direct an efficient learning process when considered as an
active learning algorithm.

VI. ACKNOWLEDGMENT

This research was partially funded by ERC Grant EXPLOR-
ERS 240007.

REFERENCES

[1] A. Baranes and P.-Y. Oudeyer, “Maturationaly-constrained competence-
based intrinsically motivated learning,” in Proceeding of the IEEE
International Conference on Development and Learning (ICDL), 2010.

[2] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary Educational Psychology,
vol. 25, no. 1, pp. 54 – 67, 2000.

[3] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Transactions on Evolution-
ary Computation, vol. 11(2), pp. pp. 265–286, 2007.

[4] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol. 4,
pp. 129–145, 1996.

[5] V. Fedorov, Theory of Optimal Experiment. New York, NY: Academic
Press, Inc., 1972.

[6] S. Thrun, “Exploration in active learning,” in Handbook of Brain Science
and Neural Networks, M. Arbib, Ed. Cambridge, MA: MIT Press, 1995.

[7] K. Merrick and M. L. Maher, “Motivated learning from interesting
events: Adaptive, multitask learning agents for complex environments,”
Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adap-
tive Systems, vol. 17, no. 1, pp. 7–27, 2009.

[8] J. Schmidhuber, “Curious model-building control systems,” in Proc. Int.
Joint Conf. Neural Netw., vol. 2, 1991, pp. 1458–1463.

[9] J. Schmidhuber, “Adaptive curiosity and adaptive confidence,” Institut
fur Informatik, Technische Universitat Munchen, Tech. Rep. FLI-149-
91, 1991.

[10] A. Baranes and P.-Y. Oudeyer, “Riac: Robust intrinsically motivated ex-
ploration and active learning,” IEEE Transation on Autonomous Mental
Development, vol. 1, no. 3, pp. 155–169, 2009.

[11] M. Schembri, M. Mirolli, and B. G., “Evolution and learning in an
intrinsically motivated reinforcement learning robot,” in Advances in
Artificial Life. Proceedings of the 9th European Conference on Artificial
Life, Springer, Ed., Berlin, 2007, pp. 294–333.

[12] J. Schmidhuber, “Optimal artificial curiosity, developmental robotics,
creativity, music, and the fine arts,” Connection Science, vol. 18, no. 2,
2006.

[13] A. Baranes and P. Y. Oudeyer, “Intrinsically motivated goal exploration
for active motor learning in robots: A case study,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Taipei, Taiwan, 2010.

[14] M. Schlesinger, “Heterochrony: It’s (all) about time!” in Proceedings of
the Eighth International Workshop on Epigenetic Robotics: Modeling
Cognitive Development in Robotic Systems, L. U. C. Studies, Ed.,
Sweden, 2008, pp. 111–117.

[15] E. Thelen, D. M. Fisher, and R. Ridley-Johnson, “The relationship
between physical growth and a newborn reflex,” Infant Behavior and
Development, vol. 7, pp. 479–493, 1984.

[16] N. Bernstein, The Coordination and Regulation of Movements. Perga-
mon, 1967.

[17] Y. Nagai, M. Asada, and K. Hosoda, “Learning for joint attention helped
by functional development,” Advanced Robotics, vol. 20, no. 10, pp.
1165–1181, September 2006.

[18] R. Pfeifer and C. Scheier, Understanding Intelligence. Cambridge, MA:
MIT Press, 1999.

[19] P. J. Bentley and S. Kumar, “Three ways to grow designs: A comparison
of embryogenies for an evolutionary design problem.” in Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO 1999),
1999, pp. 35–43.

[20] J. C. Bongard, “Evolving modular genetic regulatory networks,” in
Proceedings IEEE 2002 Congress on Evolutionary Computation (Inst
of Electrical Engineers, London),, 2002, pp. 1872–1877.

[21] M. Lungarella and L. Berthouze, “Adaptivity through physical immatu-
rity,” in Proc. of the 2nd Int. Workshop on Epigenetic Robotics, 2002.

[22] P. Oudeyer and F. Kaplan, “How can we define intrinsic motivations ?”
in Proc. Of the 8th Conf. On Epigenetic Robotics., 2008.

[23] M. Rolf, J. Steil, and M. Gienger, “Goal babbling permits direct learning
of inverse kinematics,” IEEE Trans. Autonomous Mental Development,
vol. 2, no. 3, pp. 216–229, 09/2010 2010.

[24] J. Peters and S. Schaal, “Natural actor critic,” Neurocomputing,
no. 7-9, pp. 1180–1190, 2008. [Online]. Available: http://www-
clmc.usc.edu/publications//P/peters-NC2008.pdf

[25] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology of Self-Organizing Machines. MIT Press, 2000.

[26] M. Lee, Q. Meng, and F. Chao, “Staged competence learning in
developmental robotics,” Adaptive Behavior, vol. 15, no. 3, pp. 241–
255, 2007.

[27] J. C. Bongard, “Morphological change in machines accelerates the
evolution of robust behavior,” Proceedigns of the National Academy of
Sciences of the United States of America (PNAS), January 2010.

[28] J. Eyre, Development and Plasticity of the Corticospinal System in Man.
Hindawi Publishing Corporation, 2003.

[29] M. Lungarella and L. Berthouze, “Adaptivity via alternate freeing and
freezing of degrees of freedom,” in Proc. of the 9th Intl. Conf. on Neural
Information Processing, 2002.

[30] A. Ijspeert, “Central pattern generators for locomotion control in animals
and robots: A review,” Neural Networks, vol. 21, no. 4, pp. 642–653,
2008.


