
Imitation learning of motor primitives and language bootstrapping in
robots

Thomas Cederborg and Pierre-Yves Oudeyer
INRIA, France

http://flowers.inria.fr

Abstract— Imitation learning in robots, also called program-
ing by demonstration, has made important advances in recent
years, allowing humans to teach context dependant motor
skills/tasks to robots. We propose to extend the usual contexts
investigated to also include acoustic linguistic expressions that
might denote a given motor skill, and thus we target joint
learning of the motor skills and their potential acoustic linguis-
tic name. In addition to this, a modification of a class of existing
algorithms within the imitation learning framework is made so
that they can handle the unlabeled demonstration of several
tasks/motor primitives without having to inform the imitator
of what task is being demonstrated or what the number of
tasks are, which is a necessity for language learning, i.e; if
one wants to teach naturally an open number of new motor
skills together with their acoustic names. Finally, a mechanism
for detecting whether or not linguistic input is relevant to the
task is also proposed, and our architecture also allows the
robot to find the right framing for a given identified motor
primitive. With these additions it becomes possible to build an
imitator that bridges the gap between imitation learning and
language learning by being able to learn linguistic expressions
using methods from the imitation learning community. In this
sense the imitator can learn a word by guessing whether a
certain speech pattern present in the context means that a
specific task is to be executed. The imitator is however not
assumed to know that speech is relevant and has to figure this
out on its own by looking at the demonstrations: indeed, the
architecture allows the robot to transparently also learn tasks
which should not be triggered by an acoustic word, but for
example by the color or position of an object or a gesture
made by someone in the environment. To demonstrate this
ability to find the relevance of speech, we show experiments
where non linguistic tasks are learnt along with linguistic tasks
and the imitator has to figure out when speech is relevant
(in some tasks speech should be completely ignored and in
other tasks the entire policy is determined by speech). This
simulated experiment also demonstrates that the imitator can
indeed find the number of tasks that has been demonstrated
to it, discover what demonstrations are of what task, which
framing is associated to which tasks, and for which of the tasks
speech is relevant and finally successfully reproduce those tasks
when the corresponding context is detected.

I. INTRODUCTION

We introduce an architecture and algorithms that allow a
robotic imitator to observe a set of unlabeled/uncategorized
demonstrations and from these learn a set of tasks or
motor primitives, each of them defined in its particular
representational framing and associated with a context which
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might or might not include an acoustic linguistic name.
Practically, this means that we aim at building a system
which allows a human to teach how (which policy dynamics
in which representational framing) and when a robot should
achieve various complex motor tasks/motor primitives (what
aspect of the context should trigger the motor primitive). For
example, tasks may include “draw a circle around the object
in front of you when you hear the “encircle” word”, “stack
objects in front of you if there are many and they are spread
around”, “eat the chocolate if somenone hands one to you”,
“grasp the object in front of you if you hear the “grasp it”
word”.

This research is grounded in a field of research known as
imitation learning or programming by demonstration, which
goal is to learn about the imitation behavior of humans and
animals by building models of these abilities or, as in this
paper, build useful artifacts whose learning algorithms are
inspired by imitation learning abilities in biological organ-
isms. In the approach to imitation learning investigated in
this paper a human demonstrator provides a robotic imitator
with a set of unlabeled demonstrations describing how to
perform an unknown number of tasks/motor primitives. From
the demonstrations the imitator infers how many different
tasks it has observed, which task is being demonstrated for
each of the demonstration, in what parts of the full state
space S (i.e. in which context) the task should be executed
and, for each task, what parts of the state space are relevant
for representing and infering the task policy. The task space
Sti of task nr i is such that the task policy πi can be fully
described as a function from Sti to motor outputs (we can
say that πi = πi(sti ∈ Sti)) and is obtained using a framing
sti = fi(s ∈ S), for sti ∈ Sti (finding the task space thus
amounts to finding the task framing fi). A framing fi for
task i is thus here defined as a mapping which projects the
representation of the current full state in the full available
representational space S into a typically lower-dimensional
space which corresponds to the intrinsic dimensions in which
task i is defined (i.e. all left out dimensions are not relevant
for defining the policy πi).

This paper builds on the work presented in [1], which
introduced incremental local online gaussian mixture regres-
sion (ILO-GMR) as a possible way for achieving incremental
learning of new tasks/motor primitives, by considering the
set of all tasks/policies as a single large dynamical system
which could be updated locally, i.e. being a local alternative



of the imitation learning approach presented in [12]. Here,
we extend this work in two main ways. One extension is
that the imitator builds an explicit representation of the
tasks and their properties using a sophisticated grouping
algorithm (how many tasks/motor primitives there are and
which demonstrations are associated to which task and
to which framing and to which trigerring contexts). The
second extension is to include language, through the acoustic
medium and pronounced by an interactant, as a possible
part of the context. This allows the demonstrator to teach
the robot to perform tasks in a specific linguistic context,
for example making the learning of commands possible and
seamless in the architecture. Lets take the example of a
set of demonstrations Dem provided to the imitator that
contains a subset of demonstrations Demi such that for each
demk ∈ Demi an object is encircled and the speech input
”circle” is present. If there are no dem /∈ Demi such that
the speech input ”circle” is present and the object is not
circulated, the imitator has enough information to infer that
when it hears the word ”circle” it is to encircle the object.

Related work
Imitation learning in robots, also called programing by

demonstration, has made important advances in recent years
[3]. Techniques have been developped that allows a human
to teach a robot motor primitives/tasks whose trigerring and
action policies typically depends on aspects of the context
like the position/speed of objects or of the robot itself [16].

One approach is to build a system that recognizes a set
of pre defined motor primitives or postures and then uses
the demonstration as a guide to learn how to sequence these
lower level parts into a higher level task (see for example
[4], [5], [6] and [7]). Another approach is to encode a policy
at the trajectory level (see for example [8], [9] or the more
recent [10] where a dynamical system is built using recurrent
neural networks). Within the trajectory approach the use of
Gaussian Mixture Regression [11] stands out as an easy to
use method that does not require extensive parameter tuning
by the programer and which has been successfully used in
numerous robotics experiments (see [12], [13], [14], [15]).

While many of these techniques have focused on learning
separately context-dependant tasks, [16] presents a com-
bination of the above mentioned approaches and tackles
the problem of an unlabeled set of demonstrations using a
Hidden Markov Model (HMM) and global Gaussian Mix-
ture Regression (GMR) based algorithm (HMM and GMR
following the ”sequence of lower level parts” approach and
the ”trajectory” approach respectively). Two different tasks
(corresponding to a topspin and a drive stroke task in table
tennis) are demonstrated by 4 demonstrations each to an
imitator consisting of a robotic arm. The demonstrations are
unlabeled and the imitator is not given the number of tasks.
What task to be performed is determined by the starting
position (during reproduction the imitator will perform a
topspin stroke when starting in one region and a drive
stroke when starting in another region). The imitator uses
a two step process to build a global model of the tasks:
first the number of states in the HMM are autonomously

estimated using the bayesian information criterion (meaning
that manual parameter tuning is not necessary). Then the
global model is built and it is possible to determine the
number of tasks by examining the transition probabilities
of the states in the HMM (where each group of states that
has no transitions to states outside the group, above some
threshold, can be considered a separate task). The combi-
nation of autonomously estimating the number of states,
the unlabeled demonstrations and the batch building of a
global model means that when a demonstration of a new
task is added the whole global model has to be re built
(and since the demonstrations are not labeled the number
of states has to be re checked every time there is a new
demonstration of an already demonstrated task). The number
of states increases linearly with the number of tasks and
the computational complexity increases exponentially in the
number of states. In settings where it is unlikely that a large
number of different tasks will be needed, such as the table
tennis setting in [16], this is not a problem. However, in
language learning where one would like to teach the robot
a possibly larger number of new motor skills and their
potential associated linguistic triggering context, it seems
impractical to have to rebuild a global model (re-learning all
the words previously learnt) every time a new word is learnt,
especially if the complexity of building such a global model
increases exponentially with the number of words learnt. This
is why we propose the grouping algorithm followed by the
incremental online building of local models aided by the
groups found.

Furthermore, by considering acoustic linguistic names as
a potential, but not necessary, part of the context in an
integrated architecture where speech is not treated differently
than any other part of the context (e.g. position or speed
of objects), we do not only explore a new kind of context
in relation to the imitation learning litterature, but also
propose a novel approach (to our knowledge) to computa-
tional modelling of language bootstrapping and acquisition.
Indeed, there is a flourishing landscape of computational
modelling of language acquisition research projects ([18],
[19]), exploring in particular how language acquisition can be
grounded into action [17]. In most of these models, language
and action are assumed to develop in interaction but are
still considered as separate processes which correspondances
is learnt by the organism. As a consequence, this makes
the understanding of how the function of language, i.e. to
trigger cognitive or motor behaviours, is discovered quite
complicated. In the approach presented in this paper, the
imitator not only learns that some acoustic waves are as-
sociated with certain motor behaviours, but also learns the
very fact that certain speech waves in some contexts, as
well as potentially objects colors or gestures, shall or shall
not trigger behaviours. Consequently, the imitator can learn
seamlessly non-linguistic tasks, or linguistic tasks where the
“symbolic/denoting” modality may be speech or gestures
or any other aspect of the environment, without the need
for specifying which particular modality will be used as
linguistic before the start of learning.



II. ALGORITHMS

A. Language as part of the context: The interactant, DTW
and k-means

The paper explores context dependent sensorimotor learn-
ing by imitation where one part of the context is a lin-
guistic input. This is integrated in a demonstration set-up
where in front of the learning robot which is kinesthetically
demonstrated the task (see [12]), we add an interactant
human which may or may not pronounce speech sounds or
words during the demonstration (see figure 1). When the
demonstrator, helped by the interactant, wants the robot to
learn a motor skill that should be triggered when a certain
speech command is pronounced, the interactant pronounces
the word during the motor demonstration achieved by the
demonstrator.

Our technical approach aims at representing speech uni-
formly with other elements of the contexts S, e.g. position
and speeds of objects and the robot. To do so, we use
an algorithm which projects dynamic acoustic trajectories,
initially encoded using Mel-Frequency Cepstral Coefficients
(MFCCs), into a low-dimensional static k−dimensional
space. To do so, the algorithm first samples a variety of
speech sounds in the environment (here 50). Then, it runs
a k-means algorithm where the similarity measure between
two speech sounds is here Dynamic Time Warping, which
allows identical words pronounced with various lengths and
rhythms to be re-aligned and have a high similarity. Once k
prototypes have been found, they are used to define a new
representational space for new perceived sounds: each new
perceived sound is first encoded in terms of MFCC trajectory,
then the similarity between this trajectory and the trajectory
of the k prototypes is computed using DTW, and the ordered
vector sspeech of these similarity measures is used as the static
representation of speech sounds, and is as such part of the
global context (sspeech ∈ Sspeech ⊂ S). In the current paper,
the sound is recorded starting from the beginning of the
demonstration and until the end of the demonstration (the
demonstrator stops moving the arms of the robot). Silence
is a potential sound to be recorded by the robot. In the
following experiments, k = 3. The following algorithms will
then deal with tasks where the linguistic input is important
for what to do as well as tasks where the linguistic input is
completely irrelevant (including for its triggering).

B. One demonstration =⇒ one motor primitive/task =⇒
one framing fi

In this paper, we make an assumption which we think
is reasonable and at the same time allows to considerably
improve the the system if leveraged appropriately: we assume
that a single given demonstration corresponds to a single
motor primitive/task which itself is embedded in a single
framing. Of course, several demonstrations might correspond
to the same task and the same framing, and different tasks
might have the same framing and vice-versa, but we exclude
here demonstrations which are for example unsegmented
sequences of motor primitives/tasks. Knowing that for each

task there is a framing such that all the demonstrations of
that task have a consistent policy when the data is viewed
in this framing allows the imitator to group the different
demonstrations with the below computationally tractable
algorithms. This explicit grouping will allow the imitator
to build an explicit representation of the number of tasks,
what the relevant training data is for each task, what region
of state space the task should be executed in and what the
relevant framing is for this task1. During reproduction the
current state lets the imitator infer the task (using the task
regions), which allows it to find the task data and framing
(giving the imitator access to all the relevant data represented
in a relevant space and allowing it to ignore irrelevant data).
A second assumption that we make in the following (but
this is less crucial and might be possible to remove by some
modifications of the algorithm not presented here) is that
there is a finite number of pre-given available framings.

C. Grouping demonstrations and finding triggering regions
and framings

Since the imitator does not know the number of tasks
any grouping is possible. For N = 20 demonstrations (as
in the experiment presented below) the number of possible
combinations is very large (>> 1010, and increasing very
rapidly in the number of demonstrations) and instead of
updating every possible combination, 20 possible tasks are
assigned membership probabilities for each demonstration.
This is a structure that can express every possible grouping
but that for 20 demonstrations only has 400 values to update,
referred to as mit (the probability that demonstration number
i is a member of task number t). If the number of tasks
is smaller than the number of demonstrations this would
be represented as some tasks having no members (or very
low probability for each demonstration to be part of that
task). Wether or not a demonstration should be part of a
grouping is highly dependent on what other demonstrations
are currently in this group. As soon as all the values mit
are changed the probabilities for a single demonstration is re
normalized to sum to 1 (this will not be pointed out every
time an update equation is presented). At the beginning of the
grouping algorithm, membership probabilities are distributed
randomly (of coarse summing the total probabilities of a
demonstration to 1). There are three update procedures; first
demonstration-task probabilities are concentrated in tasks
whose members has similar policies (in some framing), then
demonstration-task probabilities are concentrated in tasks
whose members prefer the same framing and finally the
demonstration-task probabilities are concentrated in tasks
that have many probable members (this prevents the different
demonstrations of a single task to form separate groups). At
step s the old memberships Ms are stored before they are

1Some readers might understand the grouping algorithm better when
viewing it as a dynamical system where each part of the algorithm is meant
to make attractors around correct solutions more stable and/or to avoid
the formation of attractors at incorrect solutions. The readers that does not
like to think in terms of attractor dynamics is warned that some parts of
the algorithm might be difficult to make sense of if seen as approximate
inference or something similar



modified by the 3 updates to Mmod (as explained in detail
below). The memberships Ms+1 at step s+1 becomes Ms+1 =
0.5 ∗Ms + 0.5 ∗Mmod (preventing dramatic fluctuations in
groups that are already fairly well established). The grouping
algorithm is run for 50 steps (so that each type of update is
done 50 times). The values of mit is also not allowed to go
below 0.00012. For D demonstrations of T tasks there are
D∗ (D−1)∗ (D−2)∗ ...∗ (D− (T −1))∗T ∗ (T −1)∗ (T −
2)∗ ...∗2 correct and identical solutions for this algorithm to
find3 (for the 20 demonstration of 5 tasks as in this paper this
is 20∗19∗18∗17∗16∗5∗4∗3∗2≈ 2.2∗108 correct identical
solutions) and the total number of answers is DD, which is
2020 ≈ 1026 in the experiment investigated here (counting
only binary values of the mmt variables and constraining
the total values of mmt to 1 for each demonstration). When
finding the of values Mmod , through the three update steps,
the values of the previous iteration Ms is often used and
will be referred to as mmtold while the values of Mmod are
simply referred to as mmt . After Mmod is calculated the new
membership values becomes Ms+1 = 0.5 ∗Ms + 0.5 ∗Mmod
(and in the next iteration Ms+1 is referred to as mmtold , etc).

Policy difference
(N−1)2 demonstration policy differences di f fmn are cal-

culated for demonstrations m and n. For each framing the dif-
ference is calculated and then di f fmn is set to the lowest dif-
ference score. First 10 points are selected from demonstration
m. Then the closest points (with distance measured in the task
space of the current framing) of demonstration n is found.
The output values are compared and the difference di f fmn
is the mean square difference of the 10 pairs. The weighted
mean error WMEmt is calculated for the other members of
task t: WMEmt = ∑i6=m di f fmi ∗mit . Then we have wmn =
((N− 1) ∗ (e−di f fmn/WMEmt ))/(∑i 6=m e−di f fmi/WMEmt ). Finally,
for each demonstration m, each demonstration n 6= m and
for each task t the update mmt ← (1−mntold )∗mmt +mntold ∗
mmt ∗wmn is performed. The new values of mmt are used in
the next update (but the same mntold values are used). When
mmt have been fully updated for all values of m and t the
memberships are re-normalized so that the memberships of
a single demonstration sum to one.

The policy difference is also used to favor tasks where
tension Tt = ∑

N
i=1 WMEit ∗mitold is low. mit ← mit/Tt

Framing similarity
The preference of the different framings of a demonstra-

tion is calculated based on how similar the demonstration
are to other demonstrations, when compared in the differ-
ent framings. Preference by demonstration m for framing
f : Wm f is calculated as Wm f = (∑i6=m(1/di f fmi f ))/(F ∗
∑

F
f =1(∑i6=m(1/di f fmi f ))) (so that the Wm f of a demonstration

average 1), where di f fmi f (the difference between demon-
strations m and i in framing f ) is calculated as mentioned

2Periodically changing the size of this lowest value as well as the
ratio between modified and old values would result in something analo-
gous to ”temperature” fluctuations in simulated annealing. This was not
implemented as the algorithm converged without it but for more noisy
demonstrations it might be worth exploring

3the number of ways to draw T groups from D places times the number
of ways to internally order the T groups

above. For every value of m, t and n 6= m an update is
performed. If Wm f > 1 and Wn f > 1 (meaning that the
two demonstrations m and n both prefer the framing f ),
they will ”pull” each other into the tasks they belong to:
mmt ← (1−mntold )∗mmt +mntold ∗mmt ∗Wm f ∗Wn f . Similarly
if Wm f > 1 and Wn f < 1 (they prefer different framings)
they will push each other out of the tasks they belong to:
mmt← (1−mntold )∗mmt +mntold ∗mmt ∗Wm f /Wn f . If Wm f < 1
and Wn f > 1 (again preferring different framings) then the
update mmt ← (1−mntold ) ∗mmt + mntold ∗mmt ∗Wn f /Wm f is
performed. If Wm f < 1 and Wn f < 1 (neither prefer the
framing) no update is performed.

Preferring few tasks
The membership probabilities for a task are multiplied

with the square of the sum of the demonstration membership
probabilities of that task (mit ← mit ∗ (∑N

k=1 mkt)2,∀1 < i <
N,1 < t < N). This is meant to make attractors where
demonstrations belonging to a single task are split into
subgroups less stable. The membership values that are used
in this update equation are the values after modification by
the framing similarity. The values Mmod that results from this
update is then used to get the Ms+1 values that will be used as
input to the policy difference update in the next step using
the equation: Ms+1 = 0.5 ∗Ms + 0.5 ∗Mmod . After 50 steps
the algorithm has created stable groups (for more difficult
experiments some more advanced convergence criteria could
easily be used, terminating when the grouping algorithm is
almost certain about where all the demonstrations belong).

Finding the framings of a task
Once the grouping algorithm is done the framing in

which the members look the most similar is selected. The
selected task framing for task t is the f for which the sum
∑

N
m=1 ∑n6=1 di f fmn f ∗mmt ∗mnt is minimized, where di f fmn f

is calculated as above (the policy difference when the nearest
points are found using the distance measure of framing f ).

Incremental grouping of demonstrations
The algorithm presented here does not build a global

model of the actual global policy and there is therefore no
need for costly recomputations when demonstrations of new
tasks are added. The grouping algorithm presented as above
is however a batch computation and, if not modified, would
have to be re run for every new demonstration observed. It is
however well suited for an incremental version (with current
data it takes only a few seconds on a modern laptop but
with larger number of tasks, demonstrations and number of
possible framings, time could become a problem). When the
algorithm has grouped all the seen demonstrations and found
the corresponding data/framings and regions it can easily use
this information when new demonstrations are added. For
D new demonstrations and T tasks found in the previous
data the number of possible tasks becomes T + D. The
correlation’s already found can also be re used by keeping the
already obtained membership values mnt so that what is left
to determine is the mnt of the new demonstrations. If the new
demonstrations fit into an already established group this may
go fast. It would also be possible to go one step further and
check if the new demonstrations fit in the established groups



for some threshold of the (policy-similarity)/(average-group-
similarity) ratio (in the already found task framing). If some
demonstrations do not fit they can be grouped separately
(this introduces some arbitrary cutoff constants that might
be good to avoid but seems promising in cases with large
numbers of tasks). This idea of including new data in existing
local models if they meet some similarity cutoff criteria and
otherwise create a new local model is similar to the algorithm
presented in [21] (in [21], individual data points instead of
entire demonstrations are checked for compatibility with a
local model but the basic idea is the same).

D. Finding the task during reproduction

The mean µdt and variance σ2
dt of the data in dimension

d of task t is calculated for each non empty task group of
demonstrations found by the grouping algorithm. To deter-
mine what task is to be executed in the current state S each
task grouping gets a relevance score Rt = p1t ∗ p2t ∗ ...∗ pdt ,
where pit is the probability density of a gaussian distribution
with mean µit and variance σ2

it in the current state Si. The
task with the highest relevance score Rt is selected and the
data of that group (seen in the framing of that group) is
used to build local models during the entire reproduction.
The relevance score of a task is designed to be higher if
the current state is similar to the data of that task. If all
the data of some task is within some tiny segment in some
dimension and the current state is far from that segment the
relevance score of that task will be very small (decreasing
exponentially with the number of standard deviations from
the mean).

E. Reproduction with Incremental Local Online Gaussian
Mixture Regression (ILO-GMR)

Once the robot has identified which task/motor primitive
should be achieved in the current context, it retrieves the as-
sociated demonstrations in their associated framing, and from
them builds online a sensorimotor policy using incremental
online gaussian mixture regression (ILO-GMR) as in [1] (but
the important difference is that here we only consider data
corresponding to the given identified task and framing, rather
than considering all demonstrations of all tasks at each time
step of the computation). We summarize this technique in
the following.

Global Gaussian Mixture Regression The GMR ap-
proach [12] first builds a model using a Gaussian Mixture
Model encoding the covariance relations between different
variables. If the correlations vary significantly between re-
gions then each local region of state space visited during
the demonstrations will need a few gaussians to encode this
local dynamics. Given data and the number of gaussians, the
use of an Expectation Maximization (EM) algorithm finds
the parameters of the model.

A Gaussian probability density function consists of a mean
µ and a covariance matrix Σ. The probability density ρ of
observing the output v from a gaussian with parameters µ

and Σ is:
ρ(v) =

1
2π

√
|Σ|

exp{−1
2
(v−µ)T

Σ
−1(v−µ)} (1)

To get the best guess of the desired output (e.g. speed in
cartesian space of the hand in the robot experiments below)
v̂ given only the current state xq (e.g. position and speed
of the hand in various referentials and position of an object
construing the context, as in the experiments below) we have:

v̂(xq) = E[v|x = xq] = µ
v +Σ

vx(Σxx)−1(xq−µ
x) (2)

Where Σvx is the covariance matrix describing the covari-
ance relations between x and v.

A single such density function can not encode non linear
correlations between the different variables. To do this we
need to use more than one gaussian to form a Gaussian Mix-
ture Model defined by a parameter list λ = {λ1,λ2, · · · ,λM},
where λi = (µi,Σi,αi) and αi is the weight of gaussian i.
To get the best guess v̂ conditioned on an observed value
xq we first need to know the probability hi(xq) that gaussian
i produced xq. This is simply the density of the gaussian
i at xq divided by the sum of the other densities at xq,
hi(xq) = ρi(xq)

∑
M
j=1 ρ j(xq)

(where each density ρi(v) is calculated

just as in (1), with Σ replaced by Σxx
i , v with xq, etc). Writing

out the whole computation we have:

hi(xq) =

αi√
|Σxx

i |
exp{− 1

2 (xq−µx
i )T (Σxx

i )−1(xq−µx
i )}

∑
M
j=1

α j√
|Σxx

j |
exp{− 1

2 (xq−µx
j )T (Σxx

j )−1(xq−µx
j )}

.

(3)
Given the best guesses v̂i(xq) from (2), and the probabili-

ties hi(xq) that gaussian i generated the output, the best guess
v̂(xq) is given by:

v̂(xq) =
M

∑
i=1

hi(xq)v̂i(xq) (4)

The parameter list is found using an Expectation Maxi-
mization algorithm (EM) [20] that takes as input the number
of gaussians and a database.

ILO-GMR The datapoints of all demonstrations are stored
in D. Then, during each iteration of the reproduction of a
task the imitator looks at its current state xq and extracts a
local database D(xq) consisting of the N points closest to
xq (measuring distance in the task space). These points are
now used as input to GMR as described above. N is the first
parameter of ILO-GMR and is typically slighlty superior to
the second parameter M multiplied by the dimensionality of
the sensorimotor space. The EM algorithm builds a GMM
and then we get the best guess of the current desired speed
v̂(xq,D(xq),N,M) as described above. So at each iteration
new local data is extracted and a new local model is built and
used to find the desired direction. The number of gaussians
M and the number of local points N are not dependent on the
number of tasks which removes the need for manual tuning
(M = 2 and N = 30 are used for all tasks).
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Fig. 1. The experimental setup simulated in this paper. The person to the
right speaks and the person to the left moves the arm of the robot. The
person guiding the arm of the robot can teach it when speech is relevant
by consistently making certain movements in response to certain words and
making other movements in response to certain object positions (completely
ignoring what is said). The position of the object is different in different
demonstrations and the person guiding the robot hand can pay attention to
the hands position either in the absolute referential frame (framing 1, blue)
or relative to the object (framing 2, red). The data from a demonstration
consists of the processed speech and the hand movements. The actual
trajectory data are gathered using a mouse capture function implemented
in Matlab meant to simulate the above situation.

III. EXPERIMENT

A. setup

We use a simulated robot environment modelling the
situation depicted in figure 1. A demonstrator provides
kinesthetic demonstrations to the robot by directly moving
its hand, which is done in 2D using a mouse here, and
we assume that we have a low-level inverse controller for
finding the corresponding joint trajectories. The robot “sits”
in front of a table, on which an object is positioned at the
beginning of the demonstration. In front of the robot, there
is also an interactant human which pronounces a speech
sound during certain demonstrations (speech sounds are not
simulated, but real speech sounds pronounced by a human
are used, never using the same speech wave for a given
word). Then, for reproductions, the robot is not touched
by the demonstrator, and has to achieve the appropriate
inferred motor primitive/task depending sometimes on the
position of the object, sometimes on the speech uttered by
the interactant, sometimes on the initial position of its own
hand, or sometimes on a combination of these features.
It can encode sensorimotor policies using one of three
framings. Framing 1 encodes the position and speed of its
hand in an absolute fixed reference frame (in addition to
the absolute position of the object and the speech sound).
Framing 2 encodes the position and speed of its hand in
the object centered referential (all other dimensions being
equal). Framing 3 includes both the absolute and relative
position and speeds of the hand. Five tasks are demonstrated
to the robot (see figure 2), each task being demonstrated
four times to the robot (in a random order: two successive

demonstrations are not necessarily from the same task):
a) Encircle the object counter clockwise when the word

”flower” is spoken (framing 2);
b) Draw a triangle clockwise in the lower left corner when

the word ”triangle” is spoken (framing 1);
c) Draw a big square clockwise when the word ”point” (to

dispel any intuition in the reader that the word itself holds
information that the imitator can use to find out what to do)
is spoken (framing 1);

d) Draw a small square counter clockwise with the bottom
right corner at the object no matter what the speech input is
(framing 2);

e) Encircle counter clockwise the point (0,0) in the fixed
reference frame no matter what the speech input is (framing
1). The policy in this task is identical to the one in task a) in
that it is to encircle the point (0,0), with the only difference
that the reference frame is different (besides different starting
positions the demonstrations of task a in framing 2 looks just
like the demonstrations of task e in framing 1).

The desired direction angle of the hand is encoded using
two dimensions here. The directional angle is measured in
its rescaled x and y components (under the constraint that
x2 +y2 = 1) which resolves difficulties with linear regression
over a periodic variable (the fact that the angles θ = −π

and θ = π are identical outputs makes the raw θ unsuitable
for the linear regression methods used). Then the amplitude
of local displacement are computed as averaged over the 7
nearest (in time) data points since the raw captured data is not
of very good quality (sometimes smooth mouse movements
will results in strange angles of the type; pt=1 = π/2, pt=2 =
0, pt=3 = π/2, pt=4 = π/2, pt=5 = 0, ... and this type of
data causes problems, for example in the policy similarity
comparisons of the grouping algorithm). The speech was
recorded in an ordinary office environment (without anyone
talking in the background). For the non-linguistic tasks, a
random sound different from the words used for the linguistic
tasks was used as input. For the 3 linguistic tasks (tasks
a, b and c) the same object position distribution was used
(uniformly distributed over the intervals: −1 < x < 1,1 < y <
2) and for the 2 non linguistic tasks the object y positions
were drawn from the uniform distribution −1.25 < y <−0.5
and the x positions were drawn from −1 < x < −0.25
for task d and .25 < x < 2 for task e. The starting hand
position (demonstration and reproduction) is always drawn
from −0.25 < x < 0.25,−1.5 < y <−1.25

B. Results

1) Results of the grouping algorithm: We can see in
figure 2 that the demonstrations are grouped correctly; the
demonstrations form 5 groups with 4 demonstrations each
and no group contains demonstrations from different tasks.

2) Reproductions: In figure 3 we see 4 reproductions of
each of the 5 tasks. In figure 4 we see the data selected
during reproductions and the reproductions themselves (both
presented in the framing found by the imitator).



Fig. 2. This shows the five reconstructed tasks represented in framing 1
to the left and in framing 2 to the right. Tasks without any mit > 0.5 are
not shown (constituting 15 out of the 20 potential groupings). The ordering
of the tasks will be different each time (this time it is e,b,a,d,c) but each
time the same set of region-framing-data tuples are found. Within each
group only demonstrations such that mit > 0.5 are shown (with this cutoff
all demonstrations are correctly grouped). Typical values are mit > 0.95 or
mit < 0.005 (meaning that the grouping algorithm is nearly certain of the
membership of each demonstration)

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated that it is possible for a robotic
imitator to autonomously group unlabelled demonstrations
into separate tasks and to find the correct framing for these
task even if the number of tasks are not provided. We have
also shown that language can be included as the context in
a task and that the imitator can determine for what tasks the
linguistic input is relevant.

An obvious continuation will be to test the architecture on
real robots. It would also be possible to substitute the speech
part of the input with hand gestures or perhaps include some
tasks where speech is relevant and some tasks where hand
gestures are important.
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the ”twitchy” demonstrations (when, as in that figure, seen in the framing
found by the imitator)
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5 different tasks in the framing estimated. Each time the correct data is
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inside the triangle).
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