# Emergent Proximo-Distal Maturation through Adaptive Exploration 

Freek Stulp and Pierre-Yves Oudeyer<br>FLOWERS team<br>ENSTA-ParisTech and Inria, France<br>http://flowers.inria.fr



European Research Council

# Maturational skill learning: freeing and freezing of motor DOFs in humans 


(Bjorklund, 1997; Turkewitz and Kenny, 1985)

Skiing

(Bernstein, 1967; Verijken et al., 1992)

## Motor maturation for efficient skill learning in robots

One task: Swinging


Berthouze and Lungarella, 2004)
(See also Ivanchenko and Jacobs, 2003)

MATURATION:
Freeing and freezing of DOFs

OPTIMIZATION
Reinforcement learning

Fixed or random

Learn one skill Simple RL/Opt.

## Adaptive maturation for skill learning in robots

Many tasks:
Omnidirectional locomotion


MATURATION:
Adaptive freeing of DOFs


INTRINSIC MOTIVATION
Competence progress

OPTIMIZATION Reinforcement learning


Adaptive clock

Learn field of skills

Simple local RL/Opt.

## Initial goal:

## Adaptive maturation controlled by $P I_{C M A-E S}^{2}$

One task: reaching



## What we got: <br> Emergent maturation from $P I_{\text {CMA-ES }}^{2}$

One task: reaching




SoA Episodic RL
$P I_{C M A-E S}^{2}$

# $P I_{C}^{2}$ CMA-ES 

information geometric optimization

(Hansen and Ostermeier, 2001)
stochastic optimal control

(Theodorou et al., 2010)

# $P I_{C}^{2}$ CMA-ES 


(Stulp and Sigaud, 2012)

# $P I_{C}^{2}$ CMA-ES Policy Improvement with Path Integrals and Covariant Matrix Adaptation 

## PI2-CMAES

reward-weighted averaging
reinforcement learning
covariance matrix updating

## Application to reaching

- Task: reach to a goal in the workspace
- 10-DOF kinematically simulated 'arm' in 2-D plane
- Policy representation:

$$
\begin{align*}
\ddot{q}_{m, t} & =\mathbf{g}(t)^{\top} \boldsymbol{\theta}_{m} & & \text { Acc. of joint } m  \tag{1}\\
{[\mathbf{g}(t)]_{b} } & =\frac{\Psi_{b}(t)}{\sum_{b=1}^{B} \Psi_{b}(t)} \text { with } \Psi_{b}(t)=\exp \left(-\left(t-c_{b}\right)^{2} / w^{2}\right) & & \text { Basis functions } \tag{2}
\end{align*}
$$

- Duration of movement is 0.5 s
- Initialy, $\boldsymbol{\theta}=0$ (no movement)


Cost function:

$$
\begin{aligned}
\phi_{t_{N}} & =10^{4}\left\|\mathbf{x}_{t_{N}}-g\right\|^{2}+\max \left(\mathbf{q}_{t_{N}}\right) \\
r_{t} & =10^{-5} \frac{\sum_{m=1}^{M}(M+1-m)\left(\ddot{q}_{t, m}\right)^{2}}{\sum_{m=1}^{M}(M+1-m)}
\end{aligned} \quad \text { Terminal cost } \quad \text { Immediate cost } \quad \text { (2) }
$$

## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\mathcal{N}(\boldsymbol{\theta}, \Sigma)
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma)
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{gathered}
\boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right)
\end{gathered}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{gathered}
\boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}) \\
\forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right)
\end{gathered}
$$

$$
\boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k}
$$

$\forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}$


## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{array}{rlrl}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) & \boldsymbol{\theta}^{\text {new }}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k}
\end{array}
$$

$\forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}$


## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1} \ldots k & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J^{\prime}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{J}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J^{\prime}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots K} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{J}-\min \left(J_{l}\right)\right)}{\max \left(J_{J}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{J}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1} \ldots k & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{0}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## $P I_{C M A-E S}^{2}$ : Reward-Weighted Averaging

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots K} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{J}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$



## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1} \ldots k & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{J}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\theta}^{n e w} & =\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
\Sigma^{n e w} & =\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{gathered}
\boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}) \\
\forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right)
\end{gathered}
$$

$$
\forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
$$

Without CMA


$$
\begin{aligned}
\boldsymbol{\theta}^{\text {new }} & =\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
\Sigma^{\text {new }} & =\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{array}{rlrl}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) & \boldsymbol{\theta}^{\text {new }}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(k_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \quad \sum^{\text {new }}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{array}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots K} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \\
& \Sigma^{\text {new }}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{J}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \boldsymbol{\theta}^{\text {new }}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \hline 0.2
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{J}\right)-\min \left(J_{l}\right)}\right)}} \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{J}\right)}\right)}} \\
& \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \Sigma^{\text {new }}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
\boldsymbol{\theta}_{k=1 \ldots k} & \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) & \boldsymbol{\theta}^{\text {new }}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
\forall k J_{k} & =J\left(\boldsymbol{\theta}_{k}\right) & \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top} \\
\forall k P_{k} & =\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} &
\end{aligned}
$$



## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \\
& \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots K} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}} \\
& \boldsymbol{\theta}^{\text {new }}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{aligned}
& \boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \Sigma) \\
& \forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right) \\
& \boldsymbol{\theta}^{n e w}=\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
& \forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{k}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{J}\right)}\right)}} \\
& \Sigma^{n e w}=\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$

## Reward-Weighted Averaging and Covariance Matrix Adaptation

$$
\begin{gathered}
\boldsymbol{\theta}_{k=1 \ldots k} \sim \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{\Sigma}) \\
\forall k J_{k}=J\left(\boldsymbol{\theta}_{k}\right)
\end{gathered}
$$

$$
\forall k P_{k}=\frac{e^{\left(\frac{-h\left(J_{k}-\min \left(J_{J}\right)\right)}{\max \left(J_{k}\right)-\min \left(J_{k}\right)}\right)}}{\sum_{l=1}^{K} e^{\left(\frac{-h\left(J_{l}-\min \left(J_{l}\right)\right)}{\max \left(J_{l}\right)-\min \left(J_{l}\right)}\right)}}
$$

Without CMA


$$
\begin{aligned}
\boldsymbol{\theta}^{\text {new }} & =\sum_{k=1}^{K} P_{k} \boldsymbol{\theta}_{k} \\
\Sigma^{\text {new }} & =\sum_{k=1}^{K} P_{k}\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)\left(\boldsymbol{\theta}_{k}-\boldsymbol{\theta}\right)^{\top}
\end{aligned}
$$



## Application to reaching

- Task: reach to a goal in the workspace
- 10-DOF kinematically simulated 'arm' in 2-D plane
- Policy representation:

$$
\begin{align*}
\ddot{q}_{m, t} & =\mathbf{g}(t)^{\top} \boldsymbol{\theta}_{m} & & \text { Acc. of joint } m  \tag{1}\\
{[\mathbf{g}(t)]_{b} } & =\frac{\Psi_{b}(t)}{\sum_{b=1}^{B} \Psi_{b}(t)} \text { with } \Psi_{b}(t)=\exp \left(-\left(t-c_{b}\right)^{2} / w^{2}\right) & & \text { Basis functions } \tag{2}
\end{align*}
$$

- Duration of movement is 0.5 s
- Initialy, $\boldsymbol{\theta}=0$ (no movement)

Cost function:

$$
\begin{aligned}
\phi_{t_{N}} & =10^{4}\left\|\mathbf{x}_{t_{N}}-g\right\|^{2}+\max \left(\mathbf{q}_{t_{N}}\right) \\
r_{t} & =10^{-5} \frac{\sum_{m=1}^{M}(M+1-m)\left(\ddot{q}_{t, m}\right)^{2}}{\sum_{m=1}^{M}(M+1-m)}
\end{aligned} \quad \text { Terminal cost } \quad \text { Immediate cost } \quad \text { (2) }
$$

- $\mathrm{Pl}_{\text {CMAES }}^{2}$ parameters: $K=20$


## Results: Re-Adadaptation to Changing Tasks




$\Rightarrow$ Life-long continual reinforcement learning with automatic exploration/exploitation trade-off

## Results: Emergent Proximo-Distal Maturation



$\Rightarrow$ Emergent Proximo-Distal Maturation

## Results: Emergent Proximo-Distal Maturation



## Results: Emergent Proximo-Distal Maturation



## Interpretation



- Stochastic optimization directs itself by following an approximated smoothed gradient/curvature i.e.
by fostering exploration in directions where impact on cost function is big, and fostering ignorance of directions where impact is less
- Arm structure is such that

1) initially proximal joints have more impact on cost function than distal ones
2) This relative impact changes as one gets closer to the maximum of the cost function
$\rightarrow$ Emergent maturation is a property of the combination between the structure of cost function (dep. on body structure) and adaptive exploration in stochastic optimization

## References

Baranes, A., Oudeyer, P-Y. (2011) The Interaction of Maturational Constraints and Intrinsic Motivations in Active Motor Development, in proceedings of the IEEE International Conference on Development and Learning (ICDLEpirob), Frankfurt, Germany.

Berthouze, L. and Lungarella,M. (2004) Motor skill acquisition under environmental perturbations: On the necessity of alternate freezing and freeing degrees of freedom. Adaptive Behavior, 12(1):47-63, 2004.

Hansen, N. and Ostermeier, A. (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation, 9(2):159-195.

Ivanchenko, V. and Jacobs, R.A. (2003) A developmental approach aids motor learning, Neural Computation, 15, 2051-2065.

Stulp, F. and Oudeyer, P.-Y. (2012) Emergent proximo-distal maturation through adaptive exploration. In International Conference on Development and Learning (ICDL). Accepted for publication.

Stulp, F. and Sigaud, O. (2012a) Path integral policy improvement with covariance matrix adaptation. In Proceedings of the 29th International Conference on Machine Learning (ICML).

Theodorou, E., Buchli, J., and Schaal, S. (2010) A generalized path integral control approach to reinforcement learning. J. of Machine Learning Research, 11:3137-3181, 2010.

