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Matura4onal	  skill	  learning:	  	  
freeing	  and	  freezing	  of	  motor	  DOFs	  in	  humans	  

Control

(Bjorklund, 1997; Turkewitz and Kenny, 1985)  

Reaching 

(Bernstein, 1967; Verijken et al., 1992) 

Skiing 



Motor	  matura4on	  for	  efficient	  skill	  learning	  in	  robots	  

MATURATION:	  
Freeing	  and	  freezing	  of	  

DOFs	  

OPTIMIZATION	  
Reinforcement	  learning	  

Fixed or random 

Learn one skill 
Simple RL/Opt. 

(See also Ivanchenko and Jacobs, 2003) 

Berthouze and Lungarella, 2004) 

One task: Swinging 



Adap%ve	  matura4on	  	  
for	  skill	  learning	  in	  robots	  

MATURATION:	  
Adap4ve	  freeing	  	  

of	  DOFs	  

OPTIMIZATION	  
Reinforcement	  learning	  

Adaptive clock 

Learn field of  
skills 

INTRINSIC	  MOTIVATION	  
Competence	  progress	  

Simple local 
RL/Opt. 
 

McSAGG-RIAC 
(Baranes and Oudeyer, 2011) 
 

Many tasks:  
Omnidirectional locomotion 



Ini$al	  goal:	  	  
Adap%ve	  matura4on	  controlled	  by	  	  	  	  	  	  	  	  PICMA!ES

2

Application to Reaching

Task: reach to a goal in the workspace

10-DOF kinematically simulated ‘arm’ in 2-D plane

Policy representation:

q̈m,t = g(t)�θm Acc. of joint m (1)

[g(t)]b =
Ψb(t)�B
b=1 Ψb(t)

with Ψb(t) = exp
�
−(t − cb)

2/w2
�

Basis functions (2)

Duration of movement is 0.5s
Initialy, θ = 0 (no movement)

PI2CMAES parameters: K = 20

MATURATION:	  
Freeing	  and	  freezing	  of	  

DOFs	  

OPTIMIZATION	  
Reinforcement	  learning	  

SoA RL 

PICMA!ES
2

Adaptive clock 

One task: reaching 



What	  we	  got:	  	  
Emergent	  matura4on	  from	  	  PICMA!ES

2

Application to Reaching

Task: reach to a goal in the workspace

10-DOF kinematically simulated ‘arm’ in 2-D plane

Policy representation:

q̈m,t = g(t)�θm Acc. of joint m (1)

[g(t)]b =
Ψb(t)�B
b=1 Ψb(t)

with Ψb(t) = exp
�
−(t − cb)

2/w2
�

Basis functions (2)

Duration of movement is 0.5s
Initialy, θ = 0 (no movement)

PI2CMAES parameters: K = 20

MATURATION:	  
Freeing	  and	  freezing	  of	  

DOFs	  

OPTIMIZATION	  
Reinforcement	  learning	  

SoA Episodic RL 

PICMA!ES
2

Emergent	  
Schedule	  

One task: reaching 



Policy	  Improvement	  with	  Path	  Integrals	  and	  Covariant	  Matrix	  Adapta4on	  PICMA!ES
2

PI2
CMAES

– Policy Improvement with Path Integrals and Covariance Matrix Adaptation

Up next
Explain reward-weighted averaging
Explain covariance matrix adaptation

(Brush over reinforcement learning. . . )

(Hansen and Ostermeier, 2001)  (Theodorou et al., 2010) 
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PI2
CMAES

– Policy Improvement with Path Integrals and Covariance Matrix Adaptation

Up next
Explain reward-weighted averaging
Explain covariance matrix adaptation

(Brush over reinforcement learning. . . )

(Stulp and Sigaud, 2012) 



Policy	  Improvement	  with	  Path	  Integrals	  and	  Covariant	  Matrix	  Adapta4on	  PICMA!ES
2PI2

CMAES
– Policy Improvement with Path Integrals and Covariance Matrix Adaptation

Up next
Explain reward-weighted averaging
Explain covariance matrix adaptation

(Brush over reinforcement learning. . . )



Applica4on	  to	  reaching	  
Application to Reaching

Task: reach to a goal in the workspace

10-DOF kinematically simulated ‘arm’ in 2-D plane

Policy representation:

q̈m,t = g(t)�θm Acc. of joint m (1)

[g(t)]b =
Ψb(t)�B
b=1 Ψb(t)

with Ψb(t) = exp
�
−(t − cb)

2/w2
�

Basis functions (2)

Duration of movement is 0.5s
Initialy, θ = 0 (no movement)

PI2CMAES parameters: K = 20

Application to Reaching

Task: reach to a goal in the workspace

10-DOF kinematically simulated ‘arm’ in 2-D plane

Policy representation:

q̈m,t = g(t)�θm Acc. of joint m (1)

[g(t)]b =
Ψb(t)�B
b=1 Ψb(t)

with Ψb(t) = exp
�
−(t − cb)

2/w2
�

Basis functions (2)

Duration of movement is 0.5s
Initialy, θ = 0 (no movement)

PI2CMAES parameters: K = 20

thereby sequentially freeing joints in a proximo-distal order
(Section V). Before doing so, we introduce the evaluation task
in the next section.

III. EVALUATION TASK

The evaluation task in this paper consists of a kinematically
simulated arm with M = 10 degrees of freedom. The length
of each arm segment is 0.6 times the length of the previous
segment, and the total length of the arm is 1. The arm should
learn to reach for a specific goal [0.0 0.5] with minimal joint
angles (expressing a ‘comfort’ factor), and whilst minimizing
acceleration at each time step. Initially, all joint angles are 0,
as depicted in Fig. 3, and have a null speed.

Fig. 3. Visualization of the reaching motion (after learning) for ‘goal 1’ and
‘goal 2’

a) Cost function: The terminal costs of this task are
expressed in (1), where ||xtN − g|| represented the distance
between the 2-D Cartesian coordinates of the end-effector
(xtN ) and the goal g1 = [0.0 0.5] or g2 = [0.0 0.25] at the end
of the movement at tN . The terminal cost also penalizes the
joint with the largest angle at max(qtN ), expressing a comfort
effect, with maximum comfort being the initial position. The
immediate costs at each time step rt in (2) penalize joint
accelerations. The weighting term (M + 1 − m) penalizes
DOFs closer to the origin, the underlying motivation being
that wrist movements are less costly than shoulder movements
for humans, cf. [21]2.

φtN = 104||xtN − g||2 + max(qtN ) Terminal cost (1)

rt = 10−5

�M
m=1(M + 1−m)(q̈t,m)2
�M

m=1(M + 1−m)
Immediate cost (2)

b) Policy representation: The acceleration q̈m,t of the
mth joint at time t is determined as a linear combination of
basis functions, where the parameter vector θm represents the
weighting of joint m.

q̈m,t = g�
t θm Acc. of joint m (3)

[gt]b =
Ψb(t)�B
b=1 Ψb(t)

Basis functions (4)

Ψb(t) = exp
�
−(t− cb)

2/w2� Kernel (5)

2This cost term was taken from [21]. In the context of this paper, it cannot
be the reason for the proximo-distal maturation we shall see in Section V.
Rather than favoring a proximo-distal maturation, this cost term works against
it, as proximal joints are penalized more for the accelerations that arise due
to exploration.

The centers cb=1...B of the kernels Ψ are spaced equidis-
tantly in the 0.5s duration of the movement, and all have a
width of w = 0.05s. Since we do not simulate arm dynamics,
the joint velocities and angles are acquired by integrating the
accelerations.

c) PI2CMAES parameterization: For all experiments, we use
PI2CMAES. Its input parameters are set as follows. The initial
parameter vector is θ = 0, which means the arm is completely
stretched, and not moving at all over time. The number of
trials per update is K = 10, and the eliteness parameter is
h = 10 (the default values suggested by [21]). The initial
and minimum exploration magnitude of each joint m is set to
λinit
m = λmin

m = 0.1, unless stated otherwise.

IV. RE-ADAPTATION TO CHANGING TASKS

In this first experiment, we evaluate PI2CMAES’s capability to
adapt to changing tasks, by changing the x-coordinate of the
goal for reaching both abruptly and gradually, as illustrated in
the top graph of Fig. 4. First the goal is set to ‘goal 1’ (cf.
Fig. 3) and after 150 update to ‘goal 2’. Between updates 200
and 250, the x-coordinate of the goal is a sinusoidal, and ends
up in ‘goal 1’ again at update 250.

The middle and bottom graph in Fig. 4 depict the learning
curves and total exploration magnitude Λ respectively. The
caption of this figure interprets these results,and explains
the interaction between changing the task, the automatic
adaptation of exploration, and the consequences for learning
progress.

Conclusion: PI2CMAES is able to automatically adapt its ex-
ploration magnitude to (re)adapt to abruptly or continuously
changing tasks. This complements our results on a dynamic
task in [19], where a simulated humanoid was to bat a baseball
in a specified region, and the position of the baseball was
changed abruptly.

V. EMERGENT PROXIMO-DISTAL MATURATION

In this experiment, our initial aim was to use the exploration
magnitude as a measure of competence to drive the release of
degrees of freedom over time, thus using competence progress
to adaptively maturing the action space such as proposed
and experimented in [1]. However, after running some initial
experiments we noticed that, without any modification, the
PI2CMAES already frees and freezes joints automatically. There-
fore maturation appears to be an emergent property of the use
of PI2CMAES in such a sensorimotor space, and there was no need
to implement a specific scheme to release degrees of freedom.
Rather than conducting a novel experiment, we therefore
investigate the first 100 updates of the first experiment in
Section IV, in particular the exploration magnitudes of the
individual joints λm=1...M . These are depicted in Fig. 5, and
interpreted in its caption.

Fig. 6 plots the movement of the arm during different stages
of learning, and visualizes λm for each joint as a bar plot.
This allows the interpretation of learning in terms of the
movement of the arm, and a more direct association between
the exploration magnitude of a joint and its position in the arm.

Cost function: 
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Policy representation:
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Basis functions (2)

Duration of movement is 0.5s
Initialy, θ = 0 (no movement)

PI2CMAES parameters: K = 20
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thereby sequentially freeing joints in a proximo-distal order
(Section V). Before doing so, we introduce the evaluation task
in the next section.

III. EVALUATION TASK

The evaluation task in this paper consists of a kinematically
simulated arm with M = 10 degrees of freedom. The length
of each arm segment is 0.6 times the length of the previous
segment, and the total length of the arm is 1. The arm should
learn to reach for a specific goal [0.0 0.5] with minimal joint
angles (expressing a ‘comfort’ factor), and whilst minimizing
acceleration at each time step. Initially, all joint angles are 0,
as depicted in Fig. 3, and have a null speed.

Fig. 3. Visualization of the reaching motion (after learning) for ‘goal 1’ and
‘goal 2’

a) Cost function: The terminal costs of this task are
expressed in (1), where ||xtN − g|| represented the distance
between the 2-D Cartesian coordinates of the end-effector
(xtN ) and the goal g1 = [0.0 0.5] or g2 = [0.0 0.25] at the end
of the movement at tN . The terminal cost also penalizes the
joint with the largest angle at max(qtN ), expressing a comfort
effect, with maximum comfort being the initial position. The
immediate costs at each time step rt in (2) penalize joint
accelerations. The weighting term (M + 1 − m) penalizes
DOFs closer to the origin, the underlying motivation being
that wrist movements are less costly than shoulder movements
for humans, cf. [21]2.

φtN = 104||xtN − g||2 + max(qtN ) Terminal cost (1)

rt = 10−5

�M
m=1(M + 1−m)(q̈t,m)2
�M

m=1(M + 1−m)
Immediate cost (2)

b) Policy representation: The acceleration q̈m,t of the
mth joint at time t is determined as a linear combination of
basis functions, where the parameter vector θm represents the
weighting of joint m.

q̈m,t = g�
t θm Acc. of joint m (3)

[gt]b =
Ψb(t)�B
b=1 Ψb(t)

Basis functions (4)

Ψb(t) = exp
�
−(t− cb)

2/w2� Kernel (5)

2This cost term was taken from [21]. In the context of this paper, it cannot
be the reason for the proximo-distal maturation we shall see in Section V.
Rather than favoring a proximo-distal maturation, this cost term works against
it, as proximal joints are penalized more for the accelerations that arise due
to exploration.

The centers cb=1...B of the kernels Ψ are spaced equidis-
tantly in the 0.5s duration of the movement, and all have a
width of w = 0.05s. Since we do not simulate arm dynamics,
the joint velocities and angles are acquired by integrating the
accelerations.

c) PI2CMAES parameterization: For all experiments, we use
PI2CMAES. Its input parameters are set as follows. The initial
parameter vector is θ = 0, which means the arm is completely
stretched, and not moving at all over time. The number of
trials per update is K = 10, and the eliteness parameter is
h = 10 (the default values suggested by [21]). The initial
and minimum exploration magnitude of each joint m is set to
λinit
m = λmin

m = 0.1, unless stated otherwise.

IV. RE-ADAPTATION TO CHANGING TASKS

In this first experiment, we evaluate PI2CMAES’s capability to
adapt to changing tasks, by changing the x-coordinate of the
goal for reaching both abruptly and gradually, as illustrated in
the top graph of Fig. 4. First the goal is set to ‘goal 1’ (cf.
Fig. 3) and after 150 update to ‘goal 2’. Between updates 200
and 250, the x-coordinate of the goal is a sinusoidal, and ends
up in ‘goal 1’ again at update 250.

The middle and bottom graph in Fig. 4 depict the learning
curves and total exploration magnitude Λ respectively. The
caption of this figure interprets these results,and explains
the interaction between changing the task, the automatic
adaptation of exploration, and the consequences for learning
progress.

Conclusion: PI2CMAES is able to automatically adapt its ex-
ploration magnitude to (re)adapt to abruptly or continuously
changing tasks. This complements our results on a dynamic
task in [19], where a simulated humanoid was to bat a baseball
in a specified region, and the position of the baseball was
changed abruptly.

V. EMERGENT PROXIMO-DISTAL MATURATION

In this experiment, our initial aim was to use the exploration
magnitude as a measure of competence to drive the release of
degrees of freedom over time, thus using competence progress
to adaptively maturing the action space such as proposed
and experimented in [1]. However, after running some initial
experiments we noticed that, without any modification, the
PI2CMAES already frees and freezes joints automatically. There-
fore maturation appears to be an emergent property of the use
of PI2CMAES in such a sensorimotor space, and there was no need
to implement a specific scheme to release degrees of freedom.
Rather than conducting a novel experiment, we therefore
investigate the first 100 updates of the first experiment in
Section IV, in particular the exploration magnitudes of the
individual joints λm=1...M . These are depicted in Fig. 5, and
interpreted in its caption.

Fig. 6 plots the movement of the arm during different stages
of learning, and visualizes λm for each joint as a bar plot.
This allows the interpretation of learning in terms of the
movement of the arm, and a more direct association between
the exploration magnitude of a joint and its position in the arm.

Cost function: 
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Results: Re-adaptation to Changing Tasks

⇒ Life-long continual reinforcement learning with automatic
exploration/exploitation trade-off
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Interpreta4on	  

•  Stochastic optimization directs itself by following an 
approximated smoothed gradient/curvature 
i.e.  
by fostering exploration in directions where impact on cost 
function is big, and fostering ignorance of directions where 
impact is less 

 
•  Arm structure is such that  
1)  initially proximal joints have more impact on cost 

function than distal ones 
2)  This relative impact changes as one gets closer to the 

maximum of the cost function 

è	  Emergent	  matura4on	  is	  a	  property	  of	  the	  combina4on	  
between	  the	  structure	  of	  cost	  func4on	  (dep.	  on	  body	  structure)	  
and	  adap4ve	  explora4on	  in	  stochas4c	  op4miza4on	  
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