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Fascinating spatio-temporal structures
in the biological world

Internal body structural
modularity

Cognitive representations,
Abstract social cognitive constructions




Three interacting time scales for the
generation and selection/learning of
new structures

Phylogenesis

(biological evolution)

mechanisms

Ontogenesis

(individuallearning)




Exploration, selection and learning

Three commonly thought sources of structure innovation:
1) Iterated random variation and selection at the phylogenetic level: Neo-

Darwinian theory explains evolution of structure based on two pillars:

1) Random variations (at the gene level);
2) Differential selection of the fittest (to reproduce, yet debates on the level of

selection);

=>» In practice most effort made on explaining why certain structures were
selected, but less effort on explaining how they may have been generated
through iterated “random” variations;

2) lterated stochastic variations and selection for morpho- and neuro- genesis
during ontogeny (e.g. stochastic cell differentiation, neural Darwinism);

3) Learning ontogenetic level: individual organisms acquire novel behavioral and
cognitive skills by processing/generalizing “training measures/data” collected
through exploration of the world

=» Most theories of learning, both in humans and artificial systems, focus on
learning/inference mechanisms but not on how observations are collected.

=>» Exploration is vastly understudied




Random exploration is not enough:
spaces are very large

Random variations in the space of structures in phenotypic space not enough,
especially for explaining relatively sudden formations of novel biological
structures

=>» Hopefully, random uniform gene variation do not produce random uniform
exploration of the structures in phenotypic space;

Random exploration for learning new skills in ontogeny is hopeless given the
ration lifetime/(size of sensorimotor skills that could be learnt) (e.g. just
learning the dynamics of one owns body involves learning a manifold with
thousands of dimensions, and even worse when interaction with objects
and others for which no prior specific models can be imagined, e.g.
learning to ride a bicycle or tennis which by the way cannot only be done
by just observation of others);

=» There must be additional constraints and mechanisms that
quide exploration at all levels




The origins of structures in the non-
biological world







Self-organization in complex systems

self—organisation

water molecules snow crystal

Self-organization: formation at a macro-level of shapes/structures/(as-)
symmetries based on low-level physical laws which do not encode explicitly a
map of these structures

=>» Typical of complex dynamical systems




Rayleigh-Bénard cells
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Biology is full of interconnected
complex systems
=>» Similar structure formation

mechanisms also at play also
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Self-organization is at all scales in
developmental systems, in particular
In embryogenesis and epigenesis

=» Constraints on the space of forms/
structures, which are not all equally
easy to generate given their bio-
physical substrate

(D’arcy Thompson, 1917)




Example of structures that highlight the role of self-
organization as a complement to Darwinian explanations

(Photo: H. Meinhardt







Spontaneous dynamical order in
ontogeny

Passive dynamic walkers:

Morphology and physics provide
constraints on possible
movements

=» Learning to walk consists in
exploring how to modify and
control this complex intrinsic
dynamics, not in exploring all
mathematically possible

trajectories of the body parts. ‘ ’,.F
: /
| A A

Tad McGeer (McGeer, 1990)




Recursive self-organization

=>» Self-organization adds upon random variations to foster the non-linear
generation of complex organized structures which are then selected,;

=» These emergent structures in turn introduce new constraints and
potentialities for self-organization that guide further exploration and
selection of novel structures;

=>» In particular, emergence of mechanisms for non-random genetic
variations, as well as of mechanisms for explicitly organized spontaneous
exploration in ontogeny =2 see self-motivated curiosity driven learning
later in the talk;

=» Recursive self-organization and constraints on exploration




Studying those families of constraints for
understanding the exploration and
formation of novel behavioural and

cognitive structures

* As an original complement to many studies done so far
on models of the growth of the body (models of

morphogenesis, in particular during embryogenesis)

* At both the individual and social levels, e.g.

— Origins of language (coupled phylogenetic,
glossogenetic and ontogenetic levels)

— Learning of new sensorimotor skills (ontogenetic level)




Tools:
computational and
robotic models and

experiments

Explore the landscape of complex-
system mechanisms, self-organization
mechanisms in particular, to enhance
our intuitions

=>» Stimulate reflexion by exploring new
hypothesis spaces and verify the
coherence of existing hypothesis

=>» Organize the scientific debate: a
meta-scientific activity

= Embryology (ex. Turing and morphogenesis, (Turing, 1952), Complex evolutionary

dynamics (e.g. Maynard Smith and theoretical biology, Maynard-Smith, 1968), ethology
of insect societies (e.g. Camazine et al., 2001);
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Self-organization in the evolution of
language and speech

Michael Studdert-Kennedy, Peter McNeilage, Bjorn Lindblom, James Hurford, ...




Different kinds of questions

On the origins and evolution of language and languages:

Why did language evolve? What were the selection
pressures and the ecology and social context?

How did language evolve? What are the biological and/or
cultural innovations that were necessary for this? How
were they generated?

Why does language has the structure/forms it has and not
others”? How were they generated/found?




Multi-disciplinarity

. Linguistics,
Neurosciences

Phonolo
& Anthropology
Ethology, l /
Primatology

Cognitive
\
Developmental —

Evolutionary
psychology / \ biology

Physiology

Computer science
and robotics




Computational approaches to the
origins of language

Formation of lexical conventions : Steels, Kaplan, Cangelosi, Parisi,
Hurford, Smith, Vogt, Nowak, Niyogi, Komarova, Brighton,...

Formation of shared categorization systems (meanings): Kaplan, Steels,
Loeveren, Brighton, Harnad, Cangelosi, Elman, ...

Origins of syntax: Kirby, Batali, Steels, Nowak, Zuidema, Hurford,
Komarova, Niyogi, Cangelosi, ...

Origins of grammar : Steels, Chang, Bergen, ...

Origins of speech: Glotin, Berrah, de Boer, Oudeyer, Goldstein, ...




9gbit 1slosvls

qit eugnoiH
A

sbsld sugpot

ybod sugaiot

2!

© BrainConnection.com

Semlcircular

Auditory

Cholesteatoma

r\ outer ear middle ear [l inner ear




Physiologic grounding of speech

Activations de la cochlée

Variables du conduit vocal Organes impliques
LP R;.Q';rwuvsjgn des iévres lévres infé;iéure et stérieﬂre. machaoire
LA Ouverture des lévres lévres inférieures et supérieure, machoire
TTCL Lieu de constriction du bout de Ia langue bout et corps de la langue, machoire
TTCD Degréde constriction du bout de la langue boutet corps de la langue, machoire
TBCL Lieude constriction du corps de la langue corps de la langue, machoire , - T
TBCD Degré de constriction du corps de la langue corps de la langue, machoire Re pl'esentatIOI'I geStUE| Ie - |IeUX Et
manieres des constrictions
VEL Ouverture du velum velum
Ouverture de la glotte glotte
GLO

4 Lévre suj I

+Lévre infi

: Activations musculaires

Centre du corps
de lalangue

+
Bout de la langue




1) Speech is a shared conventional
discrete combinatorial system

Vocalisations |G

Articulatory
targets

Non combinatorial system Combinatorial system

The repertoire of vocal gestures is
shared in a given linguistic community,
but different in different communities

(Adapted from Bickford and Tuggy, 2002)




2) Speech perception is also language
specific

- Japanes don’t hear the different between the [l] in
« lead » and the [r] In « read »

- French do not hear the difference among cantonese
« ma » with different tone and meaning:
(mere, cheval, jurer, haschish)




3) Universals and
diversity

+ phonotactics

chwartz et al., 1997)



Questions on the origins of speech

1) What are the biological pre-requisites allowing the formation
of speech codes? Do they correspond to major or minor
biological changes?

2) How can a community of individuals can come to share one
single code among many possible codes?

3) Why does speech have such a structure? How was this
structure generated?




The morpho-functional approach

Constrained functionalism:

© BralnConnection.com
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Auditory
nerve
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Communicative function + morphological constraints




Macroscopic models
(Lindblom and Liljencrants, 1972)

Energy of a vowel system =

-1 g

2. 2. d? +’BZ(ClobEffg)

1=1 7=141 S¢S =1

Inter-syllabic acoustic _ _Acoustic salience
distinctivity Articulatory cost

Minimisation on the set of possible vowel systems:
= we find the most frequent vowel systems in
humans




Limits

1) This kind of model does not explain how this optimiztion
might be achieved in nature (or culture), and whether
« good » solutions were « easy » or difficult to find;

=» Classical neo-Darwinian explanation with no reference to
the problem of search and exploration

2) This does not explain how a community can « choose » a
speech code rather than another one;

=» Search/exploration (and convergence) mechanisms are
lacking from explanation!

2) This does not explain the universals/diversity duality;




An experiment to stimulate our
thinking of the origins of speech in a

pre-linguistic context
(and not their evolution today)

Oudeyer, P-Y. (2006) Self-Organization in the Evolution of Speech, Studies in the Evolution of Language,
Oxford University Press. (Translation by James R. Hurford)

Oudeyer, P-Y. (2005) The Self-Organization of Speech Sounds, Journal of Theoretical Biology, 233(3), pp.
435--449.




The basic neural kit for basic
holistic/analogic vocal imitation

Perceptual neural map

Perceptual
measures

agent’s
sensori-motor
architecture

pharynx -.' : . ,J( / -.
el = commands _ ‘" Rl by

Articulatory neural map




(Passive) Plastic learning of sound categories

Perceptual neural map

Perceptual
measures

Learning the
distribution

of sounds in the
environment
(classical kohonen
maps)

Plasticity of auditory/perceptual map




Perceiving a vocalization

Perceptual map

e.g. Formant 1




Plasticity inside neural maps

Perceptual map

e.g. Formant 1




Examples of learnt « modes »

Perceptual map
e.g. Formant 2

e.g. Formant 1




Plastic learning of articulatory-motor
correspondences through babbling

Babbling

Perceptual neural map

Perceptual
measures

= commapds | . .k

Articulatory neural map

Hebbian plasticity of intermodal
connections




Motor babbling

Dimension 2 ArtiCUIatory target

e.g.: lip .
rounding (organ relation)
Neural map

Dimension 1 : e.g. : tongue body osition




Learning inside AND across maps:
adaptive babbling

Perceptual neural map

Perceptual
measures

< . mands %

Plasticity at both levels




Coupling the perceptual and motor map
+

basic neural plasticity

the distribution of sound produced by an agent tends
to
approximate the distribution of sounds that it hears;

Also, if an agent perceives certain sound combinations
more often than others, this will favor its own
production
of these combinations;
=» Quite compatible with the phonological attunement
observed in babies (see Vihman, 1996) and adults
(Goldinger, 2000)




What happens if babbling agents interact
together?




A community of babbling agents
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Abstract and linear vocal tract model

(Xp, Yp) €= (Xm, Ym) (2 dimensions)

Xp=aXm+b¥Ym
Yp=cXm+dYm

a et b random and fixed in a given simulation




Results:
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Two independant results

—>If an agent is alone, and can only hear its own vocalizations,
they still self-organize into a combinatorial system! So,
combinatoriality is here a result of the internal coupling between
production and perception;

—>Several agents left alone develop different combinatorial
vocalization systems;

BUT If one couples agents in a shared environment, their
vocalization systems spontaneously synchronize;




Realistic model of vowel w——
production |
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Most frequent vowel systems in human languages and emergent systems

3 vowels 4 vowels 5 vowels 6 vowels 7 vowels 8 vowels
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Conclusions of the experiment (1)

* Sharing: Shows an example of decentralized mechanism
that allows a population to « choose » a given speech code;

* Universals and diversity: Gives an elaborated insight
for understanding why and how there can be phonological
universals AND a wide diversity;

« Combinatoriality: Shows that in principle discreteness/
combinatoriality/ phonemic coding does not require non-
linearities in the articulatory-acoustic-perceptual mapping
(as opposed to e.g. Stevens or Mrayati, Carre and Guérin)




Conclusions of the experiment (2)

small change
in a small
parameter

Basic neural Space Combinatorial and

kit for analog/holistic | —— = shared speech codes
TOT evolution . .
imitation ; with universals and

(There are many possible self-organization | diversity

reasons for its prior evolution,
e.g. no absolute necessity of a
linguistic context)

 Evolutionary scenarios:
A small step for evolution, a big step for language
=» opens roads to understanding language bootstrapping,




Exploration and learning of new skills
during ontogeny




Developmental and social robotics:
processes of extension of the repertoire

of skills ™

=>The central target of developmental robotics is to understand the mechanisms that allow
animals and machines to acquire novel skills (i.e. not pre-specified in the genes or by the
engnieer/designer) by themselves or through interaction with humans;

=> Import, formalize, extend, implement and experiment concepts and theories of developmental
and social psychology, developmental neuroscience, and linguistics into robotic model and
confront them to reality;




An innate cerebral and morphological
equipment ...

Motor primitives that constrain the space of motor
commands and gestures: e.g. muscles are not
controlled individually and independently,
oscillators, ...

Sensori detectors and trackers that allow the baby
to bootstrap its attentional and emotional systems:
e.g. movement, high pitch, faces, ...

Sensorimotor reflexes: e.g. eye tracking of moving
objects, closing hands when objects touched, ...

Morphological properties that facilitate the control
of the body, ...




... built within a maturational program ...

e.g. myelination/myelinogenesis progressively building brain
regions, connecting them together and to muscles, increasing
progressively resolution of senses, ...




... and continuously extended thanks to a
generic learning and developmental system




Central challenge: finding the right balance
between constraints and plasticity

The sensorimotor spaces of real-world robots are typically very large,
especially if one does not want to constrain them too much
towards the acquisition of pre-defined specific tasks;

=>» The big problem is that in such spaces there are typically much

more potential skills to be learnt than what is actually possible to
learn in the life time: indeed, learning requires experimentation
and/or observation, and this takes time!

=» So we still need some constraints/biases, but constraints that are
not too specific of pre-defined tasks, i.e. generic task-independent
constraints or scaffoldings, which corresponds to a number of
properties of the innate equipment and social embedding of
human infants;




Social guidance: Learning by imitation/
observation



Supervised learning of new skills

® A (discrete or continuous) state space S (e.g. sensori state and memory of a robot)
* A (discrete or continuous) action space A (e.g. motor commands of a robot)

* A transition function W - S(t)x A(t) S S(t + 1)
*A parameterized action policy

* Demonstrations providing supervised training data {(Si,Ai)}

®* An optimization procedure (typically a regression method) that find a policy such

that
2

0 = argminEHnQi (S, - A,
0, i

=» Mathematical and computational problems: how to do accurate and fast
regression in high-dimensional spaces (dimensionality reduction) given potentially
very noisy training data including irrelevant dimensions? How to do regression with
hidden variables? How to generalize/extrapolate? How measures of similarities
between states should be done? How to factorize and build abstractions? ...




E.g. The Stanford Helicopter

Constrained learning by
demonstration (combination of
(Abbeel et al., 2010)  jmjtation and physical model)




Shortcomings

* Very tedious, learning not autonomous;
* No real creative solutions to problems can be found;

* Once demonstration finished, no new things are learnt;




Reinforcement learning of new skills

® A (discrete or continuous) state space S (e.g. sensori state and memory of a robot)
* A (discrete or continuous) action space A (e.g. motor commands of a robot)

* A transition function W - S(t)x A(t) s S(l + 1)
*A parameterized action policy

* A reward/value/fitness function

R:S—=Hh

or

R:S >N

®* An optimization procedure (e.g. model learning of W with approximate dynamic
programming/stochastic optimal control to find theta) that find a policy such that

Q| (implies exploration to learn W as well as to
0= arg@max EV R(S(n)) optimize theta, but most often random !)

i n=t+1

Mathematical and computational problems: same as for supervised learning + how to
represent policies and approximate search of optimal sequences of actions (how to
plan? How to encode policies? ...)




Examples

performance in tactile
object recognition

Hand

Arm Actuators Actuators Categorization
31 » 44 45 46 47 48
[00000000000000)

A

R(S,A) Jforward speed of robot Sl
1 —;év 7 8 »>17 18 22
|O000000] [0000000000] [000O0]
Z axis - )
Position A Position B Arm Proprio- Tactile Sensors Hand Proprio-
sensors sensors

A

> X Y

Tuci E., Massera G., Nolfi S. (2009). Active categorical perception in an evolved anthropomorphic robotic arm.
IEEE International Conference on Evolutionary Computation (CEC), special session on Evolutionary Robotics.




Examples

R(S(t), A(t)) = is the ball in the cup?

After Imitation I.ecrmng
Kober, J.; Peters, J.; Leaming Motor Primitives in Robofics.

Kober, J.; Peters, J. (2009). Policy Search for Motor Primitives in Robotics, Advances in Neural Information
Processing Systems 22 (NIPS 2008), Cambridge, MA: MIT Press.

Policy Gradient Reinforcement Learning for Fast Quadrupedal Locomotion. and
In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2619-2624, May 2004.




Shortcomings

* Most work so far in rather small sensorimotor spaces because
algorithms inefficient in high-dimensional spaces - exploration
has mostly been left a vastly underexplored topic here also (i.e.
elaborated techniques try to avoid exploration as much as
possible);

Less tedious, but requires careful design of the reward
function + a new design for each novel skill = a lot of work for
the engineer for each novel skill !

* Once a skill is mastered, no more skills are learnt if engineer
does nothing;




Human infants do not only learn/
discover new skills by observation/
imitation or task-specific

reinforcement learning




Internal mechanisms that directly foster
spontaneous exploration for its own sake

=» INTRINSIC MOTIVATION




Intrinsic motivation

Hull (1943), White (1959): Basic forms of motivations
(e.g. motivation for food and water, for sex, motivation
for the maintainance of physical integrity, search for
social bonding) can not account for the whole diversity
of spontaneous exploratory behaviours of humans.

= Search for novelty, surprise, challenge,
Incongruences, ...




What makes intrinsically motivating
activities/situations motivating?

What are the features of
interestingness?

Why are some activities fun to
practice (alone) ?




Drive for novelty ?

(Hull, 1943; Montgomery, 1954) proposed a drive for
novelty: the experience of novel situations is
rewarding.




Reduction of cognitive dissonances ?

Festinger’'s theory of cognitive dissonance (Festinger,
1957) asserted that organisms are motivated to reduce
dissonance, which is the incompatibility between
internal cognitive structures and the situations currently
perceived.

(Kagan, 1972) a primary motivation for humans is the
reduction of uncertainty in the sense of the
"Incompatibility between (two or more) cognitive
structures, between cognitive structure and experience,
or between structures and behavior.

However, these theories were criticized on the basis that
much human behavior Is also intended to increase
uncertainty, and not only to reduce it.




Optimal incongruity ?

(Hunt, 1965) children and adult look for optimal
Incongruity.

(Berlyne, 1960) developed similar notions as he
observed that the most rewarding situations were
those with an intermediate level of novelty, between
already familiar and completely new situations.




Effectance and personal causation ?

(White, 1959; De Charms, 1968) activities that we
master and events that are caused by our own action
are rewarding. The higher the degree of control, the
higher the interest.
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Optimal challenge ?

skills

(Csikszentmihalyi, 1991)
activities/goals that are not
already mastered but within
reach, i.e. of intermediate level
of difficulty, are rewarding.

=>» Theory of « Flow ».




Intrinsically motivated reinforcement
learning

« A mapping to learn X > Y from {(xiyi)}
examplars, where,

X can be state(t) x action(t) or just action(t)

Y can be state(t+1)

* A function of /(xi) is defined which measures
the “interest” of getting the yi associated to xi
(heuristically or optimally with respect to various
criteria)

 Action selection:

co
(x, ) — modell Xchoosen = ArgMAaXy,ex Z Vti(xi)
(x,,y,) — model 2 t=n+1

(¥3,5;) = model 3 = I(xi) is a reward and RL can be used, allowing
: to address delayed rewards
(x,,7,) = modeln => In both cases, (meta-)exploitation-(meta)

_ exploration dilemna to be addressed
to experiment?




Most frequent measures of “interest”

* Places where we have little data (e.g. Whitehead, 1991);

» Places where prediction errors are high (e.g. Linden and Weber, 1993;
Thrun, 1995);

* Places where we have low confidence,
or with highest uncertainty (e.g. Thrun and Moller, 1992);

* Places where the variance of data is maximal;
 Places where the entropy of data is maximal,;

 in RL: Counter-based, recency-based, novelty-based, « exploration

bonuses »
(Sutton, 1990; Brafman and M. Tennenholtz, 2002; Strehl et Littman, 2006;
Szita and Lorincz, 2008, ...)




These measures are inoperant in
real-world sensorimotor spaces

=» interestingness as optimal

intermediate complexity

=» How to model and implement this?




Active regulation of the growth of
complexity in exploration

) actual consequence y’
predicted consequence y

error feedback
decrease of prediction
errors (derivative)

Metapredictor metaM

expected
learning
progress

The IAC/R-IAC (Intelligent
Adaptive Cu riOSity) sensorimotor context
architecture(s)

>

Oudeyer P-Y, Kaplan , F. and Hafner, V. (2007), Baranes and Oudeyer (2009, 2010a,2010b)
Schmidhuber (1991, 2006)




R-IAC: multi-resolution probabilistic
region-based Iearning progress
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Learning Progress = decrease of mean prediction errors in a region

(Baranes and Oudeyer, 2009)




R-IAC: recursive multi-resolution
region splitting

;.- R,
i {0.7;1}
Dim2l <05 Dim2>105 \ {0;1

R, R,
{0;0.7} {0;0.7}
{0;0.5} {0.5;1}




R-1AC: optimized splitting
NEEQERINUE

Regions
N

PAM, Maximization of dissimilarity of learning
progress

PAM, ,
[ split for each reglo
Machine - . . .
. cutting dimension

assoclated cutting value

. _ LP11+1({e(t + l)l(SM(t): S(t + 1)) € §0n+1})
 LP o ({e(t+ D|(SM(),S(t+ 1)) € ¢u42))
52, e - e e@

Where the Learning Progress §iX¢ e IE]




R-IAC: multi-mode probabilistic
experiment selection

30%
Random
Babbling

/ﬂ/ﬂ,ﬂ” ‘ ‘

A region Ji# is chosen with a probabilityl &

LB, — min; (LP,)|

p,=—1» 1
Zliill|LPi — min; (LP;)|




Example in a (not so) simple
experiment

y A1

2 DOF redundant robotic An inhomogeneous Visualization of the
arm, with a 1-pixel camera space to be explored mapping to be learnt




Evolution of exploration
focus with R-IAC
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Zoomed in exploration focus with R-IAC




----- Random
ceeeDeeee |AC

—&— R-IAC Local
—F— R-1AC Multiresolution

10 20
Nb Actions (Experiments)

(Baranes and Oudeyer, 2009, IEEE Transactions on AMD)




The problem of meta-exploration of
« interestingness » in large spaces

* R-IAC like exploration allows to avoid spending too much
time on unlearnable or trivial subspaces, and fosters a focus
on zones of progressively increasing complexity

* BUT assessing I(x) still requires a certain amount of
exploration in the vicinity of x !

= We have a (better but still problematic) meta-exploration
problem!

=>» Further constraints on meta-exploration for curiosity-driven
learning are needed;




Developmental constraints on
exploration: 1) Motor primitives

Biological organisms CNS do not control muscles
iIndividually and at a very low-level, but rather parameters
of higher level primitives that encode muscular
synergies;

These primitives are often conceived as parameterized
dynamical systems;

e.g. CPG, oscillators
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http://playground.csl.sony.fr

(Oudeyer, Kaplan, Hafner, 2007, IEEE Trans. Evol. Comp.)




biting
bashing
Just looking

Self-organization of
developmental
patterns

seeing object 2

successful bite
successful bash

o W TP AR oY :
1688 1288 140806 1688

Measure 1 {number of peaks?)

Measure 2 (complete scenario?)

Measure 3 (near complete scenario?)

Measure 4 (non-atfordant bite before affordant bite?)
Measure 5 (non-affordant bash before affordant bash?) ‘es: 57 %, No: 43 %
Measure 6 (period of systematic successful bite?) : 100 % . No: 0 %
Measure 7 (period of systematic successful bash?) : 78 %, No: 11 %
Measure 8 (bite before bash?) 192 %, No: 8 %

33

Measure 9 (successful bite before successful bash?) : 77 % No: 23 %




Developmental constraints on
exploration: 2) Maturation

An important aspect of the maturation of the neural system
is the myelination process which only progressively allows
the infant’s brain to control new muscles.

The corticospinal tract is not functional at birth, but develops
extensively over the first year, in a proximo-distal and
cephalo-caudal pattern, leading to a gradual development of
the infant’s ability to control the distal musculature of the arm
and hand (Berthier et al., 1999).

For example, in the reaching task, if young infants
predominately use the musculature of the proximal arm and
trunk, the learning problem become much simpler with the
reduction in the functional degrees-of-freedom of the arm.

= The MAC-SAGG algorithm

Baranes, A., Oudeyer, P-Y. (2010) Maturationally-Constrained
Competence-Based Intrinsically Motivated Learning, in Proceedings of
IEEE International Conference on Development and Learning (ICDL
2010), Ann Arbor, Michigan, USA.




Modeling maturation and its
interaction with intrinsic motivation

Maturational clock where maturational time increases as overall competence/
quality of predictions increases

bt +1) = { zgg + A.interest(S’) i)ftﬁgrt\fgseest(S’) >0

Which then controls the growth of:

Time resolution of motor impulses

Sensori resolution for state
estimation

Volume/range of explorable values

in motor channels, with pro Ximo- Where k; represents an intrinsic value determining the differ-
distal law ence of evolution velocities between each joint. Here we fix:

k1 > ko > ... > kn, where k; is the first proximal joint.

Baranes, A., Oudeyer, P-Y. (2010) Maturationally constrained competence based intrinsically motivated
learning, in Proceedings of IEEE ICDL 2010.




2nd experiment: developmental learning of
locomotion

] () =m+ a.sin(w.t + ¢

8 joints * 3 parameters

Motor vector M with
24 dimensions

+ progressive increase of the range of accessible m, a, phi




Explore the consequence of one’s
movements

al) Finailposition d2, a2

= _ ¥ Fon ¢

Initial position (d1,

The robot tries to predict:
f(dl, al, M) =(d2 —dl, a2 — al)




Exploration trajectory
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Developmental constraints on exploration:
3) Morphological computation

The example of passive dynamic walkers
Tad McGeer (McGeer, 1990)




Acroban and semi-passive morphological
computation

P

* Acroban: the first French ’
humanoid robot, with a vertebral P w‘]

column, dynamically equilibrated :

with advanced motor primitives and \

with 32 degrees of freedom and the

possibility to interact physically

softly with the robot (Olivier Ly)

=>» Versatility of the dynamical
system (morphology + motor
primitives): e.g. driving through
physical HRI without any
(specific) reprogramming !

Videos available at




LINGUISTICS

Thank you!

SELF-ORGANIZATION
inthe EVOLUTION of Nt/ WWW. pyoudeyer.com

SPEECH
http://flowers.inria.fr

STUDIES IN THE EVOLUTION OF LANGUAGE

INRITA

= F1 wers
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