Learning to Recognize Parallel Combinations of Human Motion Primitives with Linguistic Descriptions using Non-Negative Matrix Factorization

Olivier MANGIN, Pierre-Yves OUDEYER

INRIA Flowers, Université Bordeaux 1, France

October 09, 2012

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motions and behaviors are complex

Picture: http://www.hongkiat.com/

イロト イポト イヨト イヨト

- 2

<ロ> (日) (日) (日) (日) (日)

Concurrency

3

<ロ> (日) (日) (日) (日) (日)

Learn a dictionary of **primitive motion** to explain/represent complex behaviors.

< 回 ト < 三 ト < 三 ト

Dictionary learning in other fields

(Source http://perso.telecom-paristech.fr/~fevotte/)

First centered Olivetti faces

Non-negative components - NMF - Train time 1.6s

3

An ambiguous problem

- invariances in the decomposition,
- levels of decomposition,
- real ambiguity in the behavior (e.g. cultural, contextual),

• ...

An ambiguous problem

- invariances in the decomposition,
- levels of decomposition,
- real ambiguity in the behavior (e.g. cultural, contextual),

• ...

Heuristics to guide the dictionary learning:

• structural

non-negativity

• social and multimodal

decomposition shaped by linguistic modality (also models language grounding)

Learning setup

A ► <

Learning setup

This setup is symetric to [Driesen et al., 2009].

Non-negative matrix factorization (NMF)

The big picture:

3. 3

- N

A 🖓 h

NMF for multimodal data

[Driesen et al., 2009, Mangin & Oudeyer, 2012b]

3

(人間) トイヨト イヨト

Test: producing linguistic data from demonstrated motions

October 09, 2012 11 / 19

3

Motion features moving skeleton (from Kinect)

3. 3

A 1

Motion features

moving skeleton (from Kinect) \longrightarrow angles and angle velocities for each DOF

Mangin, Oudeyer (INRIA, Bordeaux 1)

The choreography dataset

Available online:

http://flowers.inria.fr/choreography_database.html

- 3 separate sets of examples:
 - primitive: only one primitive motion demonstrated in each example

(326 examples, 47 primitive motions)

• mixed small: complex choreographies

(137 examples, 16 primitive motions)

• mixed full: complex choreographies

(277 examples, 47 primitive motions)

Evaluation on classification

(only one primitive motion at a time)

Evaluation on reconstruction of multiple labels

(reconstructed description is thresholded and compared to human annotations)

	I _{full}
17 labels (SVM, linear)	0.818
17 labels (NMF, Frobenius)	0.854
17 labels (NMF, DKL)	0.789
47 labels (SVM, linear)	0.422
47 labels (NMF, Frobenius)	0.625
47 labels (NMF, DKL)	0.574

Evaluation on reconstruction of multiple labels

(reconstructed description is thresholded and compared to human annotations)

	I _{full}
17 labels (SVM, linear)	0.818
17 labels (NMF, Frobenius)	0.854
17 labels (NMF, DKL)	0.789
47 labels (SVM, linear)	0.422
47 labels (NMF, Frobenius)	0.625
47 labels (NMF, DKL)	0.574

Results for unobserved combinations

	I _{full}
17 labels (NMF, Frobenius)	0.568
17 labels (SVM, linear)	0.667
47 labels (NMF, Frobenius)	0.406
47 labels (SVM, linear)	0.206

Extensions

• Other constraints (sparsity, etc.)

• Going to real language (merge with [Driesen et al., 2009])

• Learn position in time

 Other motion representations (towards imitation): models of activities as combination of potential functions [Mangin & Oudeyer, 2012a]

Thank you!

3

<ロ> (日) (日) (日) (日) (日)

Bibliography

Driesen, J., ten Bosch, L., & Van Hamme, H. (2009).

Adaptive Non-negative Matrix Factorization in a Computational Model of Language Acquisition.

In Interspeech (pp. 1-4).

Mangin, O. & Oudeyer, P.-Y. (2012a).

Learning the combinatorial structure of demonstrated behaviors with inverse feedback control.

In to appear in third International Workshop on Human Behavior Understanding, number 3 Vilamoura, Algarve (Portugal).

Mangin, O. & Oudeyer, P.-Y. (2012b).

Learning to recognize parallel combinations of human motion primitives with linguistic descriptions using non-negative matrix factorization.

In to appear in International Conference on Intelligent Robots and Systems (IROS 2012) Vilamoura, Algarve (Portugal): IEEE/RSJ.

イロト 不得下 イヨト イヨト

Evaluation on reconstruction of multiple labels

(reconstructed description is thresholded and compared to human annotations)

	I _{full}	I _{given number}
17 labels (SVM, linear)	0.818	-
17 labels (NMF, Frobenius)	0.854	0.971
17 labels (NMF, DKL)	0.789	0.905
47 labels (SVM, linear)	0.422	-
47 labels (NMF, Frobenius)	0.625	0.755
47 labels (NMF, DKL)	0.574	0.679

Results for unobserved combinations

	I _{full}	I _{given number}
17 labels (NMF, Frobenius)	0.568	0.800
17 labels (SVM, linear)	0.667	-
47 labels (NMF, Frobenius)	0.406	0.653
47 labels (SVM, linear)	0.206	-