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Motions and behaviors are complex

Picture: http://www.hongkiat.com/
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Learn a dictionary of primitive motion to explain/represent complex

behaviors.
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Dictionary learning in other fields

(Source http://perso.telecom-paristech.fr/˜fevotte/)

(Source Scikit-learn documentation)
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http://perso.telecom-paristech.fr/~fevotte/Talks/talk_cambridge11.pdf
http://scikit-learn.org/stable/modules/decomposition.html


An ambiguous problem

invariances in the decomposition,

levels of decomposition,

real ambiguity in the behavior (e.g. cultural, contextual),

...

Heuristics to guide the dictionary learning:

structural
non-negativity

social and multimodal
decomposition shaped by linguistic modality

(also models language grounding)
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Learning setup

This setup is symetric to [Driesen et al., 2009].
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Non-negative matrix factorization (NMF)

The big picture:

Data

�

Dictionary

·

Coefficients
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NMF for multimodal data

[Driesen et al., 2009, Mangin & Oudeyer, 2012b]
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Data representation

Motion features
moving skeleton (from Kinect)

−→ angles and angle velocities for each DOF

−→ histograms of positions or position-velocities

−→ flattened in a non-negative vector

Language representation
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0] −→ symbols 2 and 8
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The choreography dataset

Available online:

http://flowers.inria.fr/choreography_database.html

3 separate sets of examples:

primitive: only one primitive motion demonstrated in each example

(326 examples, 47 primitive motions)

mixed small: complex choreographies

(137 examples, 16 primitive motions)

mixed full: complex choreographies

(277 examples, 47 primitive motions)
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http://flowers.inria.fr/choreography_database.html


Evaluation on classification

(only one primitive motion at a time)
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Evaluation on reconstruction of multiple labels

(reconstructed description is thresholded and compared to human

annotations)

lfull

17 labels (SVM, linear) 0.818
17 labels (NMF, Frobenius) 0.854
17 labels (NMF, DKL) 0.789
47 labels (SVM, linear) 0.422
47 labels (NMF, Frobenius) 0.625
47 labels (NMF, DKL) 0.574

Results for unobserved combinations

lfull

17 labels (NMF, Frobenius) 0.568
17 labels (SVM, linear) 0.667
47 labels (NMF, Frobenius) 0.406
47 labels (SVM, linear) 0.206
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Extensions

Other constraints (sparsity, etc.)

Going to real language (merge with [Driesen et al., 2009])

Learn position in time

Other motion representations (towards imitation):
models of activities as combination of potential functions

[Mangin & Oudeyer, 2012a]
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Thank you!
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Evaluation on reconstruction of multiple labels

(reconstructed description is thresholded and compared to human

annotations)

lfull lgiven number

17 labels (SVM, linear) 0.818 -
17 labels (NMF, Frobenius) 0.854 0.971
17 labels (NMF, DKL) 0.789 0.905
47 labels (SVM, linear) 0.422 -
47 labels (NMF, Frobenius) 0.625 0.755
47 labels (NMF, DKL) 0.574 0.679

Results for unobserved combinations

lfull lgiven number

17 labels (NMF, Frobenius) 0.568 0.800
17 labels (SVM, linear) 0.667 -
47 labels (NMF, Frobenius) 0.406 0.653
47 labels (SVM, linear) 0.206 -
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