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Abstract
The “Policy Improvement with Path Integrals” (PI2) [25] and “Covariance Matrix Adaptation
- Evolutionary Strategy” [8] are considered to be state-of-the-art in direct reinforcement
learning and stochastic optimization respectively. We have recently shown that incorporat-
ing covariance matrix adaptation into PI2– which yields the PI2CMA algorithm – enables adap-
tive exploration by continually and autonomously reconsidering the exploration/exploitation
trade-off. In this article, we provide an overview of our recent work on covariance matrix
adaptation for direct reinforcement learning [22–24], highlight its relevance to developmental
robotics, and conduct further experiments to analyze the results. We investigate two com-
plementary phenomena from developmental robotics. First, we demonstrate PI2CMA’s ability
to adapt to slowly or abruptly changing tasks due to its continual and adaptive exploration.
This is an important component of life-long skill learning in dynamic environments. Sec-
ond, we show on a reaching task how PI2CMA subsequently releases degrees of freedom from
proximal to more distal limbs as learning progresses. A similar effect is observed in human
development, where it is known as ‘proximodistal maturation’.

Keywords
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1. Introduction

Due to its generality, temporal abstraction, and ability to learn
without models, reinforcement learning (RL) has been proposed
as an appealing paradigm for organizing learning and behav-
ior in developmental robotics [21]. Using RL in the context of
robotics – and developmental robotics in particular – introduces
several challenges, including scaling to high-dimensional con-
tinuous action spaces, being able to adapt to changing tasks
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and environments, and continually reconsidering the explo-
ration/exploitation trade-off.
We have recently [24] proposed to address these challenges
by incorporating covariance matrix adaptation, as used in for
instance “Covariance Matrix Adaptation - Evolutionary Strat-
egy” [8], into the state-of-the-art direct reinforcement learning
algorithm “Policy Improvement with Path Integrals” (PI2) [25].
PI2CMA inherits its robust, efficient learning in high-dimensional
action spaces from PI2, whereas its novel covariance matrix
adaptation adapts exploration such as to achieve a good ex-
ploration/exploitation trade-off over time.
In this article, we provide an overview of this recent work [22–
24], highlight its relevance to developmental robotics, and con-
duct further experiments to analyze the results. After discussing
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related work in Section 2, we present the PI2CMA algorithm – in-
troduced in [24] – in Section 3. We then focus on using PI2CMA
in the context of developmental robotics by investigating two
complementary phenomena.
First, we demonstrate PI2CMA’s ability to automatically adapt to
changing tasks [22] in Section 4. PI2CMA does so by determining
the appropriate exploration magnitude autonomously – explo-
ration decreases once a task has been learned (exploitation),
but increases again automatically if the task or environment
changes such that the task must be re-learned. This explo-
ration behavior is not explicitly encoded in the algorithm, but
is rather an emergent feature of updating the covariance matrix,
which governs exploration, with probability-weighted averaging.
Second, Section 5 shows how PI2CMA spontaneously self-
organizes a maturational structure while exploring the degrees-
of-freedom of the motor space [23]. The algorithm automatically
releases degrees of freedom from proximal to more distal limbs
as learning progresses. A similar process is observed when in-
fants learn to reach [3, 11]. PI2CMA achieves this smoothly and
entirely through self-organization, rather than using discrete
stages or pre-defining their order, as in [2, 4, 5].

2. Related Work

In this article, we demonstrate that covariance matrix adapta-
tion enables adaptive exploration in a reinforcement learning
context. Most research on adaptive exploration for reinforce-
ment learning has been done in the context of discrete Markov
Decision Processes (MDPs), which has lead to adaptive explo-
ration algorithms such as E

3 [10], R-MAX [6], and others [26].
However, the curse of dimensionality and the discrete nature
of MDPs makes it difficult to apply it to the high-dimensional,
continuous spaces typically found in robotic control tasks. An
alternative to discrete state and action spaces is use a parame-
terized policy π(θ), and search directly in the space of the pa-
rameters θ to find the optimal policy π(θ∗). REINFORCE was
an early direct reinforcement learning algorithm [27], and espe-
cially Natural Actor-Critic [14] demonstrated that this approach
is applicable to robotics tasks. The Fisher information matrix
enables NAC to find a more direct path to the optimal solution
in parameter space [14], and, although not investigated well from
this perspective, may also be considered a form of adaptive ex-
ploration. In general, gradient-based algorithms must estimate
a gradient from the trials, which cannot always be done robustly
with a limited number of trials, noisy data, or discontinuous cost
functions. Also, there are several algorithmic parameters which
are difficult to tune by hand. The relationship between the natu-
ral gradient and probability-weighted averaging, as used in PI2
and PI2CMA, was recently made explicit through the framework of

Information-Geometric Optimization [1].
Because our focus is not on the algorithms that are the founda-
tion of PI2CMA, we have not been able to do justice to the sound
derivations on which these algorithms are based. For a more
in-depth discussion of covariance matrix adaptation – as in the
CMA-ES– we refer to [8]. PI2 is derived from first principles of
optimal control, and gets its name from the application of the
Feynman-Kac lemma to transform the Hamilton-Jacobi-Bellman
equations into a so-called path integral, which can be approx-
imated with Monte Carlo methods. For the full derivation, we
refer to [25]. Related algorithms include Policy Gradients with
Parameter-Based Exploration (PGPE) [20], the first direct pol-
icy search method with parameter exploration. Covariance ma-
trix adaptation is applied to PGPE by Miyamae et al. [12] and
also used in Natural Evolution Strategies [7]. Because these
algorithms use a scalar reward/cost function, they are evolution
strategies, and do not use a temporal averaging step as PI2CMA.
An excellent discussion of the relationship between direct rein-
forcement learning algorithms and evolution strategies is given
by Rückstiess et al. [16], where extensive empirical comparisons
between several methods in both fields are made.
Several previous works have also considered mechanisms for
progressive release of motor degrees of freedom, the focus of
the experiment in Section 5. Some models have studied the
impact of pre-defined and fixed stages of freeing and freezing
DOFs [4]. Others have shown how the pace of the sequencing
of discrete stages [5] or of the continuous increase of explored
values of DOFs along a proximodistal scheme [2] could be adap-
tively and non-linearly controlled by learning progress and lead
to efficient motor learning in high-dimensional robots. In this
article, we have shown that without an explicit mechanism for
motor maturation, such efficient maturational schedules, alter-
nating freezing and freeing of DOFs, can be generated by PI2CMA
entirely automatically.
In this respect, the work Schlesinger et al. [19] is most simi-
lar to ours, in that it also uses a kinematically simulated arm,
and “several constraints appear to ‘fall out’ as a consequence

of a relatively simple trial-and-error learning algorithm.” [19],
one of them being the locking of joints. Policies are repre-
sented as four-layer feedforward neural networks, which are
trained through evolutionary learning. The main differences to
our work is that we consider higher-dimensional systems – 10
DOF instead of 3DOF – and use one learning agent instead
of a population of 100. On the other hand, we take only pro-
prioreceptive information into account (the current joint angles),
whereas Schlesinger et al. [19] also consider visual feedback
(an abstract image with 1 × 8 pixels) and tactile information (a
boolean indicating contact with the object). The fact that such
different policy representations and learning algorithms lead to
similar emergent properties indicates that some deeper relation-
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ship between optimization and proximodistal maturation cause
this emergence. A first step towards finding this relationship is
presented in Section 5.1.

3. PI2CMA Algorithm
The PI2CMA, or “Policy Improvement with Path Integrals and Co-
variance Matrix Adaptation”, was recently proposed in [24]. It
is a combination of the PI2 direct reinforcement learning al-
gorithm [25] with covariance matrix adaptation, as used in for
instance CMA-ES [8]. For a discussion of the similarities and
differences between these algorithms we refer to [24].
The goal of PI2CMA is to optimize a set of policy parameters θ
with respect to a cost function R (τ) = φ�N

+
�

�N

��
�� , where τ

is a trajectory that starts at time �0 in state x�0 and ends at
�N . φ�N

is the terminal reward at �N , and �� is the immediate
reward at time �. For example, φ�N

may penalize the distance
to a goal at the end of a movement, and �� may penalize the
acceleration at each time step during a movement. To optimize
R (τ), PI2CMA uses an iterative approach of exploring and updating
in policy parameter space, as listed in Algorithm 1, which we
now describe in more detail.

Exploration
PI2CMA first takes K samples from a Gaussian distribution
θ�=1���K ∼ � (θµ� Σ) (line 1). The vector θ represents the pa-
rameters of a policy, which for instance controls the sequence
of desired joint angle of an arm, or desired �-coordinate of an
end-effector. As the PI2 algorithm on which it is based, PI2CMA
therefore explores in policy parameter space, a concept first
proposed by Sehnke et al. [20]. Executing the policy with pa-
rameters θ� yields a trajectory τ with N time steps (line 1).
An entire trajectory is referred to as τ , whereas τ � refers to
the subtrajectory of τ , starting at ��, and ending at �N . In this
nomenclature, τ is therefore just a convenient abbreviation for
τ0. From now on, indices � and � refer to time steps, and � and
� refer to trials. A trial or roll-out is the full trajectory resulting
from executing the policy with parameters θ� .

Parameter Update per Time Step: Probability-weighted Aver-
aging
After exploration, a new parameter vector θnewµ is computed,
which is expected to lead to a lower trajectory cost than the cur-
rent θµ . This parameter update is done in two phases: 1) com-
pute different parameters θnew

µ��
for each of the N time steps �,

using probability-weighted averaging; 2) compile the N updates
θnew

µ��
into one vector θnewµ , using temporal averaging.

Although exploration is performed in the space of θ, costs are in-
curred by actually executing the policy, and are thus defined in

Figure 1. Visualization of a parameter update at one time step �. The up-
per right graph shows the 2D parameter space, with the current
Gaussian distribution (dashed black), and K = 10 random samples
taken from it. The lower left graph shows the mapping from cost
to probability. In this illustratory example, the minimum θ∗ lies at
[0,0]; samples θ� closer to [0,0] thus have lower costs, and there-
fore higher probabilities (represented by green circles). The new
distribution θnew

µ��
� Σnew

� for time step � (purple ellipse) is acquired
through probability-weighted averaging.

terms of the trajectory τ that results from this execution. PI2CMA
optimizes the parameters θ not only for the entire trajectory, but
also for all subtrajectories τ �=1���N of τ . The cost of a subtrajec-
tory τ � is computed as the sum over the costs throughout the rest
of the trajectory starting at time step �: S(τ �) = φ�N +

�
N

�
���

.
This is known as the cost-to-go, because it represents the ac-
cumulated ‘cost to go’ from � to the end of the trajectory. The
underlying principle (the Bellman principle) is that a subtrajec-
tory τ � starting at �� can only be optimal if the subtrajectory
τ �+1 is optimal too.

The probability of each trajectory P(τ ��� ) is then computed by
exponentiating the cost-to-go S(τ ��� ) of that trajectory at each
time step (line 1). For illustration purposes, this transformation
from cost to probability is depicted in Figure 1. Here, we see the
K = 10 samples in a two-dimensional θ space. The mapping
from cost to probability is visualized in the lower-left graph.
High-cost samples are assigned a low probability, and low-
cost samples a high probability. This mapping follows directly
from the PI2 derivation, and may be interpreted as preferring
trajectories with lower cost to occur with a higher probability.
The parameter � determines the exact shape of the mapping
from cost to probability.

The two core steps in PI2CMA (line 1 and line 1) are then to update
the mean and covariance matrix of the sampling distribution by
using probability-weighted averaging: θnewµ =

�
P�θ� . Since

low-cost samples have a higher probability, this means they
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input :
θinit ; initial parameter vector

J(τ) ; cost function

λ
init

� λ
min

� λ
max

� ; exploration level (initial,min,max)

K ; number of roll-outs per update

� ; eliteness parameter

θµ = θinit

Σ = λ
initI

while true do

Exploration: sample parameters and execute policies

foreach � in K do
θ� ∼ � (θµ� Σ)
τ� = executepolicy(θ� )

end
Compute parameter update for each time step

foreach � in N do
Evaluation: compute probability for each time step and trial

foreach � in K do
S(τ��� ) =

�
N
�=� J(τ��� )

E(τ��� ) = �

�
−�(S(τ��� )−min(S(τ��� )))
max(S(τ��� ))−min(S(τ��� ))

�

P
�τ���

�
=

E(τ��� )
�

K
�=1 E(τ��� )

end
Update: Probability-weighted averaging over K trials

θnew
µ��

=
�

K
�=1

�
P

�τ���

� M��� (θ� − θµ )
�

Σ���
�

=
�

K
�=1

�
P

�τ���

�
(θ� − θµ )(θ� − θµ )�

�

Σ���
�

= boundcovar(Σ���
�

� λ
min

� λ
max)

end
Update: Temporal averaging over N time steps

θnewµ =
�

N
�=0(N−�)θnew

µ���
N
�=0(N−�)

Σ��� =
�

N
�=0(N−�)Σ���

��
N
�=0(N−�)

end
Algorithm 1: The PI2CMA algorithm.

will contribute more to the update1. The resulting update is
visualized in Figure 1. As we see, the distribution mean θnewµ
is now closer to the minimum, and the covariance matrix is also
‘pointing’ more towards to the minimum. Using probability-
weighted averaging avoids having to estimate a gradient, which
can be difficult for noisy and discontinuous cost functions.

Parameter Update: Temporal Averaging

In line 1, a different parameter update θnew
µ��

is computed for each
time step �. If the trajectory has 500 time steps, we therefore
perform probability-weighted averaging 500 times. To acquire
a single new parameter vector θnewµ , the final step is there-
fore to average over all time steps (line 1). This average is
weighted such that earlier parameter updates in the trajectory
contribute more than later updates, i.e. the weight at time step
� is T� = (N − 1)/

�
N

�=1(N − 1). The intuition is that earlier
updates affect a larger time horizon and have more influence on

1 M�� ��
is a projection matrix onto the range space of g��

[25],

which are the basis function activations, cf. (6)

the trajectory cost [25].

Covariance Matrix Updating: Lower Bounds

In PI2CMA, the initial covariance matrix Σ of the Gaussian distri-
bution from which samples are taken is set to Σ = λ

initIB . Here,
B is the dimensionality of the policy parameter vector θ, which
corresponds to the number of basis functions (cf. Section 4.2).
In PI2CMA, Σ is then subsequently updated and adapted over
time; one such update is illustrated in Figure 1. A common
problem with covariance matrix adaptation is premature con-
vergence “bringing search, with respect to the short principal

axes of Σ, to a premature end.” [8]. Therefore, “[i]n the practi-

cal application, a minimal variance […] should be ensured” [8].
To avoid such degeneracy of Σ, we compute its eigenvalues,
place a lower bound of λ

min on the eigenvalues, and reconstruct
the bounded covariance matrix from the eigenvectors and the
bounded eigenvalues2. This procedure is implemented in the
‘boundcovar’ function in line 1 in Alg. 1. In our experience, co-
variance matrix bounding is essential, as the algorithm usually
prematurely converges without it3.
From now on, we will refer to the ‘exploration magnitude’ as the
largest eigenvalue λ of the covariance matrix Σ. The length of
the dashed arrow in Figure 1 represents the larges eigenvalue
λ; the direction of the arrow is the eigenvector. Note that the
initial covariance matrix Σ = λ

initIB has a ‘largest’ (they are all
the same) eigenvalue of λ

init.

Multi-dimensional policies

Algorithm 1 is applied to the parameters of a 1-D policy. Opti-
mizing the parameters of an M-dimensional policy, e.g. 7-D for
the 7 joints of an arm, or 3-D for the end-effector position, is
done by running the algorithm in parallel for each of the dimen-
sions of the policy, with the same costs but different parameter
vectors θ�=1���M and covariance matrices Σ�=1���M

4. Re-Adaptation to Changing Tasks

In this section, we first show how PI2CMA is able to adapt to
changing tasks; an important component of life-long skill learn-
ing in dynamic environments. In Section 5, we then show how

2
For robotics applications, we also recommend putting an up-

per bound λ
max

on the eigenvalues of Σ, as too much exploration

might lead to dangerous behavior on the robot, e.g. reaching

joint limits, too high accelerations. For the simulated experi-

ments described in this article, λ
max

was not used.
3

More robust convergence may also be achieved by updating

only the diagonal of the covariance matrix [15].
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PI2CMA automatically freezes and frees joints in an arm, thereby
sequentially freeing joints in a proximodistal order.

4.1. Experiment 1: T-Ball
Inspired by [14], the goal in this task is for the robot to use a
bat to hit a ball such that lands in a designated area. We use
the SL simulation environment [18] to accurately simulate the
CBi humanoid robot, as visualized in Figure 2. We keep the
torso of the robot fixed, and use only the 7 degrees of freedom
of the right arm. The bat is fixed to the end-effector.

Figure 2. The T-ball task for the CBi robot. The bat and ball trajectory are
those as learned after 20 updates.

The robot uses PI2CMA to optimize the shape parameters of a
Dynamic Movement Primitive (DMP) [9]. The parameter of the
DMP, the cost function of the task, and the PI2CMA parameters
are summarized in Appendix A.
The learning curve and exploration magnitude λ are depicted at
the center of Figure 3. The trajectory of the ball after 1, 20, 21,
40 updates is depicted in the top graph, and the trajectories of
the end-point of the bat for the 10 exploration trials after 1, 20,
27 and 40 updates are depicted at the bottom.
Initially, the ball lands far from the target area A , which leads
to high costs B . After 20 updates, the ball lands in the target
area C (it does so for the first time after only 5 updates),
and the costs are much lower D , and exploration has been
dramatically reduced D (note logarithmic �-axis for λ). The
lower exploration also becomes clear in the bottom plots, where
the variance in the bat’s movement is initially much higher E

than after 20 updates F .
After update 20, we position the ball 5cm lower, which has
several consequences: the ball no longer lands in the target
area G so costs immediately go up H , after which exploration
increases again I and costs go down J . After 27 updates,
exploration reaches a maximum K , and decreases again. Af-
ter 40 updates, the costs and exploration are both very low L .
Note that because the penalty due to accelerations is quite high

Figure 3. The center graph depicts the cost of the evaluation trial and the
total exploration magnitude as learning progresses. The trajectories
of the ball (top plot) and the trajectory of the end-point of the bat
(bottom plot) after 1, 20, 21/27 and 40 updates.

in this task (we recommend this for ballistic movements as re-
quired for T-ball), the costs do not converge as close to 0 as in
the other task.

Conclusion
PI2CMA is able to switch autonomously between phases in which
it learns and phases in which it predominantly exploits what it
has learned. This is an important property for developmental
robotics, where robots have to be able to learn life-long and
continually.

4.2. Experiment 2: Reaching for a Target
In experiment 2, the evaluation task consists of a kinematically
simulated arm with M = 10 degrees of freedom. The length of
each arm segment is 0.6 times the length of the previous seg-
ment, and the total length of the arm is 1. The arm should
learn to reach for a specific goal [0�0 0�5] with minimal joint
angles (expressing a ‘comfort’ factor), and whilst minimizing ac-
celeration at each time step. Initially, all joint angles are 0,
as depicted in Figure 4, and have a null speed. The robot uses
PI2CMA to optimize the shape parameters of a policy, which is de-
scribed along with the cost function and algorithmic parameters
are summarized in Appendix B.
We again evaluate PI2CMA’s capability to adapt to changing tasks
by changing the �-coordinate of the goal for reaching both
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Figure 4. Visualization of the reaching motion (after learning) for ‘goal 1’ and
‘goal 2’

abruptly and gradually, as illustrated in the top graph of Fig-
ure 5. First the goal is set to ‘goal 1’ (cf. Figure 4) and after
150 update to ‘goal 2’. Between updates 200 and 250, the �-
coordinate of the goal is a sinusoidal, and ends up in ‘goal 1’
again at update 250.
The middle and bottom graph in Figure 5 depict the learn-
ing curves and total exploration magnitude Λ, i.e. the sum
over the exploration magnitudes of the individual dimensions:
Λ =

�
M

�=1 λ�. In the first 30 updates, exploration goes up,
which enables fast learning, and consequently the cost goes
down rapidly. Between updates 30-100, the exploration de-
creases, and after 100 updates it approximately reaches its
minimum level of M · λ

init = 10 ∗ 0�1 = 1. Thus, the task has
been learned. When the goal changes abruptly at update 150,
exploration goes up again. Note that we do not notify the al-
gorithm that the task has changed; the increasing exploration
is an emergent property of using probability-weighted averag-
ing to update the covariance matrix. At update 180, the task
has again been learned, and exploration is minimal. Whilst the
goal is moving, exploration is constantly on, but when the goal
remains still again at update 250, it decreases again.

Conclusion
This experiment confirms that PI2CMA is able to automatically
adapt its exploration magnitude to (re)adapt to abruptly or con-
tinuously changing tasks.

5. Emergent Proximodistal Matura-
tion
In this experiment, our initial aim was to use the exploration
magnitude as a measure of competence to drive the release of
degrees of freedom over time, thus using competence progress
to adaptively maturing the action space such as proposed in [2].
However, after running some initial experiments we noticed that,
without any modification, the PI2CMA already frees and freezes
joints automatically. Therefore maturation appears to be an
emergent property of the use of PI2CMA in such a sensorimotor

Figure 5. Top: �-coordinate of the task goal. Center: Learning curve (µ ± σ

over 10 learning sessions). Note the logarithmic �-axis. Bottom:
Total exploration magnitudes over all joints Λ (µ±σ over 10 learning
sessions).

space, and there was no need to implement a specific scheme
to release degrees of freedom. Rather than conducting a novel
experiment, we therefore investigate the first 100 updates of the
second experiment in Section 4, in particular the exploration
magnitudes of the individual joints λ�=1���M . These are depicted
in Figure 6.

When inspecting the development of the exploration of the dif-
ferent joints λ� as learning progresses, we notice the following.
The exploration magnitude of the first joint λ1 increases very
quickly A , i.e. it is freed. After 18 updates λ1 peaks, and ac-
counts for more than 50% of the total exploration Λ B . Then, the
second joint is freed and even overtakes the first joint, peaking
at update 26 C . Subsequently, joint 3 increases, and peaks at
update 34 D . It thus becomes clear that the first three joints,
which have the largest effect on end-effector position, are freed
from proximal to more distal ones. At update 50, the goal is
reached E , and the rest of the learning is concerned with min-
imizing joint angles and accelerations, which involves all joints.
At update 150 the task is learned, and all exploration (beyond
λ

min) has decayed F . Thus, when the task is learned, the explo-
ration in all joints ceases.

Figure 7 plots the movement of the arm during different stages
of learning, and visualizes λ� for each joint as a bar plot. This
allows the interpretation of learning in terms of the movement of
the arm, and a more direct association between the exploration
magnitude of a joint and its position in the arm.
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Figure 6. These plots present a closer look at the exploration magnitudes
during the first 100 updates of the experiment depicted in Figure 5.
Top: Exploration magnitudes λ� for each joint � = 1 � � � 10 sepa-
rately. These values are averaged over 10 learning sessions, and
thus represents consistent, reproducible behavior. Bottom: The total
exploration magnitude Λ, split into the individual components λ� , i.e.
the cumulative of the top graph. In this last graph, λ

min = 0�1 has
been subtracted from all λ� , as we want to emphasize the explo-
ration above the baseline, on which PI2CMA has an influence. The
last graph therefore starts at 0.

Figure 7. The arm motion at different stages of learning. The numbers next to
the arm indicates the number of updates. The exploration magnitude
per joint λ� is plotted as a bar graph below each arm.

5.1. Sensitivity Analysis

In this section, we consider the effect that perturbations of indi-
vidual joints have on the cost through sensitivity analysis. Sen-
sitivity analysis aims at “providing an understanding of how the

model response variables respond to changes in the input.” [17].
Here, we use sensitivity analysis to investigate how the varia-
tion in individual joint angles – the input – influences the vari-
ation in the cost – the response variables. This provides a first

indication of why proximodistal maturation arises.
In the default posture, all joint angles are zero. This posture
is perturbed by setting one of the 10 joint angles to π

10 . The
10 possible perturbations, one for each joint, are visualized in
Figure 8. For the default and perturbed configuration, we then
compute the distance of the end-effector to the target ||x�N

−x�
||.

Because this is a static context there are no joint accelerations,
and the immediate costs (4) are not included. The right graph
plots the difference in cost between the outstretched arm, and
the slightly bent arm (where one joint angle is π

10 ).
For all arm configurations, we see that proximal joints lead to
a higher average difference in the distance to the target than
more distal ones. This should not come as a surprise, as ro-
tating more proximal joint leads to smaller movement in the
end-effector space, and it is the end-effector space that deter-
mines the distance to the target. As a consequence, the same
magnitude of perturbation will lead to a larger difference in cost
for more proximal joints.

Figure 8. Results of the sensitivity analysis.

The goal of PI2CMA is to minimize costs through exploring and
updating in parameter space. The results in Figure 8 demon-
strate that perturbing proximal joints leads to larger differences
in costs than distal joints. Therefore, an optimizer can be ex-
pected to minimize costs more quickly if it initially focuses ex-
ploration on proximal joints, rather than distal ones.

Conclusion
PI2CMA freezes and frees joint sequentially, depending on where
the robot is on its self-organized developmental trajectory to
learn the task. As learning progresses, joints are freed in a
proximal-to-distal order, as is observed when infants learn to
reach [3, 11]. Rather than having to specify the order of free-
ing/freezing joints [2], and/or their timing [13], structured matu-
ration is an emergent property of probability-weighted covari-
ance matrix updating in the PI2CMA algorithm. The sensitivity
analysis provides a partial explanation of why this behavior
arises.
In our current work, we are studying the robustness of the
emergence of proximo-distal freeing of DOFs to different body
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structures (for instance human link lengths vs. equidistant
link lengths), as well as the location of the target within
the workspace of the arm. Our preliminary results show that
longer relative proximal link lengths lead to a more pronounced
proximo-distal freeing of joints.

6. Conclusion
In this article, we demonstrate that PI2CMA shows useful develop-
mental properties for adaptive exploration and life-long learn-
ing of motor skills. First, we demonstrated how it continually
and automatically adapts to abruptly or continuously chang-
ing tasks, and without direct external information about these
changes. Second, we show how the proximodistal maturation
observed in humans [3, 11], and previously demonstrated to be
highly useful for robot learning in high-dimensions [2], was here
entirely self-organized. Identifying the detailed roles of body
structure, target reachability, learning algorithm and their cou-
pling for maturational self-organization will thus be a focus of
future work.
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Appendix

A. Experiment 1: T-Ball
Cost function.
The cost function for this task is:

J��
=0�01

7�

�=1
�̈

2
��

/N + φ (1)

φ =
�

if in target area 0
else distance to target area in m

(2)

Where we penalize the acceleration of �
th joint �

�

��
to avoid

high acceleration movement). We divide by the number of time
steps N so as to be independent of the movement duration. The
target area lies between -1 and -1.5� from the robot in the �

direction, as visualized in Figure 2.

Policy Representation
In this task, the policy is represented as a Dynamic Movement
Primitive [9]. The DMP has 7 dimensions to control the 7 joint
angles of the arm. Each dimension has B = 3 basis functions,
and is initialized as a minimum-jerk trajectory of duration 1s
from the start to the end pose as visualized in Figure 2.

PI2CMA parameters
The PI2CMA parameters are K = 20, � = 10. Initially Σinit = λ

initI3
with λ

init=20, and λ
min=0.02.

B. Experiment 2: Target Reaching
Cost function
The terminal costs of this task are expressed in (3), where
||x�N

− �|| represented the distance between the 2-D Cartesian
coordinates of the end-effector (x�N

) and the goal �1 = [0�0 0�5]
or �2 = [0�0 0�25] at the end of the movement at �N . The terminal
cost also penalizes the joint with the largest angle at max(q�N

),
expressing a comfort effect, with maximum comfort being the ini-
tial position. The immediate costs at each time step �� in (4)
penalize joint accelerations. The weighting term (M + 1 − �)
penalizes DOFs closer to the origin, the underlying motivation
being that wrist movements are less costly than shoulder move-
ments for humans, cf. [25]. This cost term was taken from [25].
In the context of this article, it cannot be the reason for the
proximodistal maturation in Section 5. Rather than favoring a
proximodistal maturation, this cost term works against it, as
proximal joints are penalized more for the accelerations that
arise due to exploration.

φ�N
= 104

||x�N
− �||

2 + max(q�N
) Terminal cost (3)

�� = 10−5
�

M

�=1(M + 1 − �)(�̈���)2
�

M

�=1(M + 1 − �)
Immediate cost (4)

Policy representation
The acceleration �̈��� of the �

th joint at time � is determined
as a linear combination of basis functions, where the parameter
vector θ� represents the weighting of joint �.

�̈��� = g�
� θ� Acc. of joint � (5)

[g� ]� = Ψ�(�)
�

B

�=1 Ψ�(�)
Basis functions (6)

Ψ�(�) = exp
�

−(� − ��)2/�
2
�

Kernel (7)

The centers ��=1���B of the B = 3 kernels Ψ are spaced equidis-
tantly in the 0.5s duration of the movement, and all have a
width of � = 0�05�. Since we do not simulate arm dynamics,
the joint velocities and angles are acquired by integrating the
accelerations.

PI2CMA parameters
The input parameters of PI2CMA are set as follows. The initial
parameter vector is θµ = 0, which means the arm is completely
stretched, and not moving at all over time. The number of trials
per update is K = 10, and the eliteness parameter is � = 10
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(the default values suggested by [25]). The initial and minimum
exploration magnitude of each joint � is set to λ

init
�

= λ
min
�

= 0�1,
unless stated otherwise.
For this task, we use an extended version of PI2CMA, that also uses
‘evolution paths’ to update the covariance matrix, as in CMA-
ES. Since this is not part of the core algorithm, we refer to
equations (14)-(17) in Hansen et al. [8] or equations (20)-(23)

in Stulp et al. [24] for the implementation of evolution paths.
The evolution paths effectively act as a low-pass filter on the
covariance matrix update. From other results not reported here
due to space limitations, we conclude that the use of evolution
paths has only a very marginal impact on this particular task,
and does not influence the emergence of proximodistal matura-
tion.
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