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Preface

Since 2001, the Epigenetic Robotics annual International Conference (initially a workshop) 
has established itself as a unique forum to present  and discuss original interdisciplinary 
research from developmental sciences, neuroscience, biology, cognitive robotics, artificial 
intelligence, and other disciplines relevant to the study of cognitive development  in natural 
and robotics systems.

Epigenetic systems, whether natural or artificial, share a prolonged developmental process 
through which varied and complex cognitive and perceptual structures emerge as a result of 
the interaction of an embodied system with a physical and social environment.

Epigenetic robotics includes the twofold goal of understanding biological systems by the 
interdisciplinary integration between social/life and engineering sciences and, simultaneously, 
that of enabling robots and other artificial systems to autonomously develop skills for any 
particular environment (instead of programming them to solve particular goals for a specific 
environment). Interdisciplinary theory and empirical evidence are used to inform epigenetic 
robotic models, and these models can be used as theoretical tools to make experimental 
predictions in developmental psychology and other disciplines studying cognitive 
development in living systems.

To promote interdisciplinary discussion, this year's edition of Epigenetic Robotics will 
include ample time for discussions and organized brainstorming, in addition to keynote talks 
and oral and poster presentations. Although the conference is open to all aspects of cognitive 
development, this year we have a special focus on emotional and social development, 
particularly addressed by keynote speakers and special working groups. Submissions were 
however welcome regarding all aspects of the study of cognitive development, including (but 
not limited to):

• The roles of and interactions among motivation, emotion, and value systems in 
development.

• The development of emotional competencies and systems.
• The development of "social skills", such as imitation, synchrony processing, 

intersubjectivity, joint  attention, intentionality, non-verbal and verbal communication, 
sensorimotor schemata, shared meaning and symbolic reference, social learning, 
social relationships, social cognition ("mind reading", "theory of mind").

• The role of play in emotional, social, and cognitive development.
• The development of verbal and non-verbal communication.
• Links between (the development of) expression and communication.
• Architectures for autonomous development.
• Dynamical systems models of emotional, social, and cognitive development.
• The scope and limits of maturation, the mechanisms of open-ended development.
• The mechanisms of stage formation and stage transitions.
• Interaction between innate structure, ongoing developing structure, and experience.
• The interplay between embodiment, learning biases and environment.
• Algorithms for self-supervision, autonomous exploration, representation making, and 

methods for evolving new representations during ontogeny.



• Philosophical and social issues of development.
• The epistemological foundations of using robots to study development.
• The use of robots as theoretical tools (e.g., to make predictions) in the study of 

development in biological systems.
• The use of robots in applied settings (e.g., autism therapy) to study development  in 

biological systems.
• Robots that can undergo morphological changes and how they can be used to study 

interplays among social, emotional, cognitive and morphological development.

Submissions were solicited in two categories: long papers presenting more mature research 
ideas and results, and short  abstracts presenting more preliminary and ongoing work. We 
received a large number of high quality submissions, and we are very grateful to the members 
of the Program Committee and other additional reviewers for helping us with the selection 
process and the care they put to provide constructive feedback to authors).

We are also grateful to the rest  of the EpiRob’09 Organizing Committee: Nadia Bianchi-
Berthouze (University College London, UK), Aude Billard (EPFL, Switzerland), and Hideki 
Kozima (Miyagi University, Japan), as Publicity Co-chairs for the help advertising the 
conference, and to Christian Balkenius (Lund University, Sweden), our Publications Chair, 
for his help with the publication of the proceedings. Thanks go also to Kostas Karpouzis, 
Amaryllis Raouzaiou (both of NTUA, Greece) and Giles Thomas for their help in the 
preparation of various dissemination materials. 

We kindly acknowledge the financial support provided by the EU projects FEELIX 
GROWING (FP6 IST-045169, www.feelix-growing.org), EUCogII (requested, to be 
confirmed, www.eucognition.org) and of the School of Computer Science at the University of 
Hertfordshire.

Last, but not least, very special thanks to the students of the Adaptive Systems Research 
Group at  the University of Hertfordshire who eagerly helped with many organizational issues: 
Luisa Damiano, Ester Ferrari, Yossi Borenstein, Antoine Hiolle, and particularly Sven Magg, 
who doubled as conference secretariat  and webmaster always with extreme efficiency and 
kindness.

We hope you enjoy the EpiRob’09 proceedings!

Lola Cañamero 
EpiRob’09 General and Program Chair

and

Pierre-Yves Oudeyer
EpiRob’09 Program Co-Chair



Table of Contents

Invited talks

An epigenetic approach aids the study of primate social cognition.......................................................... 3
Kim Bard

Robots as social learners .......................................................................................................................... 5
Cynthia Breazeal

Relationship formation: the culture of attachment.................................................................................... 7
Heidi Keller

Joint attention in apes and humans........................................................................................................... 9
David Leavens

The missing link between emotion and motivation: insights from developmental research ................... 11
Jacqueline Nadel

Why language acquisition and intrinsic motivation should go hand in hand ......................................... 13
Pierre-Yves Oudeyer

Papers

The emergence of words: Modelling early language acquisition with a dynamic systems perspective.. 17
Guillaume Aimetti, Louis ten Bosch, Roger K. Moore

Interactions between motivation, emotion and attention: From biology to robotics .............................. 25
Christian Balkenius, Jan Morén, Stefan Winberg    

Adults structure object demonstrations to support infant attention and learning................................... 33
Rebecca J. Brand    

Epigenetic embodiment ........................................................................................................................... 41
Luisa Damiano, Paul Dumouchel     

Two examples of active categorisation processes distributed over time ................................................. 49
Tomassino Ferrauto, Elio Tuci, Marco Mirolli, Gianluca Massera, Stefano Nolfi     

Applying the schema mechanism in continuous domains ....................................................................... 57
Franck Guerin, Andrew Starckey     

Caregiver’s auto-mirroring and infant’s articulatory development enable vowel sharing ..................... 65
Hisashi Ishihara, Yuichiro Yoshikawa, Minoru Asada     

Self-regulation mechanism for continual autonomous learning in open-ended environments ............... 73
Kenta Kawamoto, Yukiko Hoshino, Kuniaki Noda, Kohtaro Sabe     



Category-based intrinsic motivation ....................................................................................................... 81
Rachel Lee, Ryan Walker, Lisa Meeden, James Marshall  

A cognitive robotic model of grasping .................................................................................................... 89
Zoran Macura, Angelo Cangelosi, Rob Ellis, Davi Bugmann, Martin H. Fisher, Andriy Myachykov

Navigation via Pavlovian conditioning: a robotic bio-constrained model of autoshaping in rats......... 97
Francesco Mannella, Ansgar Koene, Gianluca Baldassare     

Evaluating intrinsically motivated robots using affordances and point-cloud matrices....................... 105
Kathryn Merrick    

An unsupervised model of infant acoustic speech segmentation........................................................... 113
Matthew Miller, Alexander Stoychev     

A comparison of strategies for developmental action acquisition in QLAP ......................................... 121
Jonathan Mugan, Benjamin Kuipers     

Can imprecise internal motor models explain the ataxic hand trajectories during reaching
in young infants? ..................................................................................................................................  129
Francesco Nori, Giulio Sandini, Jürgen Konczak     

Learning of situation dependent prediction toward acquiring physical causality ................................ 137
Masaki Ogino, Tetsuya Fujita, Sawa Fuke, Minoru Asada

Reward-free learning using sparsely-connected hidden Markov models and local controllers ........... 145
Kohtaro Sabe, Kenta Kawamoto, Hirotaka Suzuki, Katsuki Minamino, Kenichi Hidai    

Formalization of different learning strategies in a continuous domain framework ............................. 153
Danijel Skocaj, Matej Kristan, Ales Leonardis     

Learning the sensorimotor structure of the foveated retina .................................................................. 161
Jeremy Stober, Lewis Fishgold, Benjamin Kuipers     

Bottom-up social development through reproducing contingency with sensorimotor clustering ......... 169
Hidenobu Sumioka, Yuji Takeuchi, Yuichiro Yoshikawa, Minoru Asada     

Affordance learning from range data for multi-step planning .............................................................. 177
Emre Ugur, Erol Sahin, Erhan Oztop    

Posters

Using the interaction rhythm to build an internal reinforcement signal: a tool for intuitive HRI........ 187
Pierre Andry, Nicolas Garnault, Philippe Gaussier



The IM-Clever project: Intrinsically motivated cumulative learning versatile robots ......................... 189
Gianluca Baldassare et al.

Emotion non-verbal behaviour modelling: Low and high exhibitors ................................................... 191
Stefania Balzarotti, Rita Ciceri

Proximo-distal competence based curiosity driven exploration ........................................................... 193
Adrien Baranes, Pierre-Yves Oudeyer

The role of internal value systems for a memory-based robotic architecture ....................................... 195
Paul Baxter, Will Browne

Gesture recognition as a prerequisite of imitation learning in human-humanoid experiments............ 197
Florian A. Bertsch, Verena V. Hafner

Designing a turn-taking mechanism as a balance between familiarity and novelty............................. 199
Arnaud  J. Blachard, Jacqueline Nadel

Towards a new social referencing paradigm......................................................................................... 201
S. Boucenna, P. Gaussier, L. Hafemeister, K. Bard

Should I worry about my stressed pregnant robot?............................................................................... 203
David Bowes, Lola Cañamero, Rod Adams, Volker Steuber, Neil Davey

Retro-projected faces effectiveness on gaze reading ............................................................................. 205
Frédéric Delaunay, Joachim de Greef, Tony Belpaeme

How internal modelling arises when “the world is not enough”: an evolutionary robotics study....... 207
Onofrio Gigliotta, Giovanni Pezzulo, Stefano Nolfi

Experimental setup for studying the development of tool-use on the example of object throwing ....... 209
Verena V. Hafner, Werner Sommer

Learning affective landmarks ...............................................................................................................  211
Antoine Hiolle and Lola Cañamero

Implementing inhibition of return: embodied visual memory for robotic systems................................ 213
Martin Hülse, Sebastian McBride, Mark Lee

Distal place recognition based navigation control inspired by hippocampus – amygdala interaction 215
Ansgar Koene, Gianluca Baldassare, Francesco Mannella, Tony J. Prescott

Learning paths as a sequence of sensorimotor associations ................................................................ 217
Matthieu Lagarde, Pierre Andry, Philippe Gaussier

Learning to collaborate by observation ................................................................................................ 219
Stéphane Lallée, Felix Warneken, Peter Ford Dominey



Integrating a need module into a task-independent framework for modelling emotion:
a theoretical approach........................................................................................................................... 221
S.L. Lufti, C. Sanz-Moreno, R. Barra-Chicote, J.M. Montero

Investigating the basis for conversation between human and robot .................................................... 223
Carolyne Lyon, Joe Saunders

The use of emotions in an autonomous agent’s decision making process ............................................. 225
Maria Malfaz, Miguel A. Salichs

Multimodal representation of hand grasping based on deep belief nets............................................... 227
Masaki Ogino, Takanori Nagura, Minoru Asada

How are representations affected by scene statistics in an adaptive active vision system?.................. 229
Dimitri Ognibene, Giovanni Pezzulo, Gianluca Baldassare

Self-motivated learning robot................................................................................................................ 231
Mohamed Oubbati, Günther Palm

Emerging attention: Reward based model............................................................................................. 233
Vitaly Pimenov

Long short-term memory for affordance learning................................................................................. 235
Sergio Roa, Geert-Jan Kruijff

Modelling emotional development via finite topological spaces and stratified manifolds ................... 237
Lee Rudolph, Li Han, Eric Charles

Selective integration based on subjective consistency facilitates simultaneous development
of vocal imitation and lexicon acquisition ............................................................................................ 239
Yuki Sasamoto, Yuichiro Yokishawa, Minoru Asada

Facing the homunculus: on innate structures for vision of assistive robots ......................................... 241
Matthias J. Schlemmer, Markus Vincze

History of usage of Piaget’s theory of cognitive development in AI and robotics: 
a look backwards for a step forwards ................................................................................................... 243
Georgi Stojanov

A minimum relative entropy principle for the brain .............................................................................. 245
Antoine Van de Ven

CASA MILA: cross-cultural and social aspects of multimodal interactions in language acquisition .. 247
Paul Vogt 



Invited Talks





An epigenetic approach aids the study 
of primate social cognition

Kim Bard
University of Portsmouth, UK

Abstract

In this talk, I will discuss my developmental studies of emotion, socialization, and social 
cognition in chimpanzees. I’ve found that the behavior of newborn chimpanzees, within the 
first  30 days of life, changes in response to the social environment, in predictable ways. For 
example, the emotional expression of joy, the playface, is seen more often in chimpanzees 
raised in a nursery in which human faces are visible than in one where human faces are 
masked. Patterns of eye gaze, within the first 3 months of life, are determined by socialization 
practices. For example, more (or less) mutual gaze is encouraged by mother chimpanzees as a 
function of less (or more) physical contact  with their infants. Nine to twelve months of 
experience of emotional engagement with social partners and with objects, provides the 
foundation for joint attention. For example, in nursery-raised chimpanzees, I’ve found that 
emotion and sociability account for a significant 50% of the variance in joint  attention 
outcomes. I will speak about  the value of applying comparative perspectives to the study of 
development  and of applying developmental perspectives to the study of other species. This 
comparative developmental approach is, in a general sense, an epigenetic approach that  aids 
in the study of the evolution of social cognition.

Short bio

Kim A. Bard is Professor of Comparative Developmental Psychology and Director of the 
Centre for the Study of Emotion at  the University of Portsmouth, UK. Prior to arriving at 
Portsmouth, she was Research Scientist at Yerkes National Primate Research Center of Emory 
University, where she investigated the roles of emotion and socialization in early 
development, and designed a Responsive Care Nursery for chimpanzees to enhance their 
species-typical development. Kim Bard has a distinctive perspective, which concerns 
understanding the process of development in evolution. She conducts empirical studies with 
an eye to clarifying universal and species-specific characteristics of humans and great  apes. 
Her studies of social cognition suggest that  humans and great apes share a large degree of 
plasticity, especially in early socio-emotional communicative abilities. These social cognitive 
abilities include intentional and referential communication, and social referencing (i.e., the 
ability to seek information from a caregiver about  novel objects and use that  emotional 
information to regulate behavior). The study of these abilities across species leads to better 
understanding of the precursors, contexts, and sequelae of social cognition in human 
development.
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Robots as social learners
Cynthia Breazeal 

Massachusetts Institute of Technology, Media Laboratory, USA

Abstract

As personal robots enter the social environments of our workplaces and homes, it  will be 
important  for them to be able to learn from a wide demographic of people. Our research seeks 
to identify simple, natural, and prevalent human teaching cues as well as social-cognitive 
mechanisms that  are useful for directing the attention of robot learners so they can learn 
efficiently and effectively from these interactions. 
This research goal is significant for several reasons. First, most people do not  have expertise 
in robotics or machine learning techniques and therefore are not willing or able to tune 
parameters, label data sets, specify evaluation functions, or otherwise structure the learning 
task for the robot learner via technical means. Second, personal robots will have to learn new 
tasks and skills within the bounds of human attention and patience. Third, people bring a 
lifetime of experience in learning from and teaching others. Through social interaction, they 
naturally structure appropriate learning environments and interactions for each other to learn 
efficiently and effectively. Personal robots should be equipped with social cognitive skills to 
leverage these social interactions to learn efficiently and effectively from people.
In this talk, we present  our research in human-robot  interaction that  concerns the structure of 
social behavior, embodied interaction, and social-cognitive skills that  we term ̀ `social filters.” 
Namely, the myriad of ways in which external social interaction and internal social-cognitive 
skills mediate the interaction of attention with learning. Social filters can be social-cognitive 
capabilities such as perspective taking that  focuses the robot’s attention on the subset of the 
problem space that  is important  to the teacher. This constrained attention allows the robot  to 
overcome ambiguity and incompleteness that can often be present in human demonstrations 
and thus learn what  the teacher intends to teach. Other social filters can be external, dynamic, 
embodied cues through which the teacher uses his or her body to spatially structure the 
learning environment to direct the attention of the learner. Our challenge is to identify what 
cues people use, how they employ them, and how they might be leveraged by the robot’s 
social-cognitive mechanisms to efficiently guide the robot’s internal attention and learning 
processes. We report  on a series of empirical investigations of human teaching and learning 
behavior to identify such cues and their use. We then present a set of “social filters” that  we 
have implemented within the cognitive architecture of the robot to demonstrate and evaluate 
the robot’s ability to learn tasks from human demonstration and guidance.

Short bio

Cynthia Breazeal is an Associate Professor of Media Arts and Sciences at  MIT, where she 
founded and directs the Personal Robots Group (formerly Robotic Life Group) at the Media 
Lab and also co-directs the Center for Future Storytelling. She is a pioneer of Social Robotics 
and Human Robot Interaction (HRI). Her research program focuses on developing the 
principles, techniques, and technologies for personal robots. She has developed numerous 
robotic creatures ranging from small hexapod robots, to embedding robotic technologies into 
familiar everyday artifacts, to creating highly expressive humanoids, including the well-
known Kismet. Ongoing research includes the development  of socially intelligent robot 
partners that  interact  with humans in human-centric terms, and how HRI can be applied to 
enhance human behavior as applied to motor learning and cognitive performance. 
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Relationship formation: the culture of 
attachment

Heidi Keller
University of Osnabrück, Germany

Abstract

Relationship formation is a universal developmental task for which humans are equipped with 
universal predispositions. The claim of attachment teory, that  the emergence, the nature and 
the consequences of attachment  are equally universal has been challenged by cultural and 
cross cultural research. In this presentation, the prevaling attachment conception is discussed 
as an adaptation to Western middle class psychology, where psychological autonomy is the 
motor of development. An alternative is presented with the case of the rural Cameroonian Nso 
who have a physical conception of attachment, i.e. reliability of physical care and body 
contact, integrated in a multiple caregiving system. The necessity to recognize culture specific 
solutions of universal developmental tasks is discussed.

Short bio

Heidi Keller holds a chair for developmental psychology at the University of Osnabrück in 
Germany and is head of the Culture and Development Unit  there. She also holds a position at 
NIH Section of Social and Emotional Development  in Bethesda and is a fellow at  the Center 
for Advanced Studies in Berkeley, USA. Currently, Dr. Keller is president of the International 
Association of Cross-Cultural Psychology. Her longstanding research interests and 
publications have focused on cross-cultural similarities and differences in childrearing in 
societies such as Costa Rica, Cameroon, India und the United States.
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Joint attention in apes and humans 
David Leavens

University of Sussex, UK

Abstract

Joint attention is foundational to the acquisition of language in humans. Numerous theorists 
have concluded that joint attention is therefore a human species-specific biological adaptation 
for establishing co-reference. However, the well-documented emergence of humanlike joint 
attentional skills in our nearest  living relatives, the great  apes, without any explicit training, 
poses a challenge for this theoretical perspective. One reaction to these emerging findings 
from great  apes has been the claim that although there is surface similarity in joint attention, 
there are, nevertheless, deep psychological differences between humans and apes in the 
display of joint  attention. An alternative account  emphasises psychol ogical continuity 
between humans and apes. I will argue for the latter view, in a review of the empirical data on 
joint attention in humans and great apes.

Short bio

Dr. Leavens earned a B.S. in anthropology (with honours, Phi Beta Kappa) from the 
University of California at  Riverside, in 1990, an M.A. in anthropology from Southern 
Illinois University at Carbondale, in 1993, and a Ph.D. in psychology from the University of 
Georgia at Athens, in 2001. He is a senior lecturer in the School of Psychology at the 
University of Sussex, near Brighton, United Kingdom. Since 1994, he has studied 
communication in chimpanzees, in collaboration with Dr. William D. Hopkins at  the Yerkes 
National Primate Center, in Atlanta, Georgia, and Prof. Kim A. Bard, at  Portsmouth 
University, United Kingdom.
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The missing link between emotion and 
motivation: insights from developmental 

research
Jacqueline Nadel

CNRS USR3246, Emotion Centre, Paris, France

Abstract
This talk will deal with a central misunderstanding in the field of cognitive and 
neurocognitive sciences: the misunderstanding of the dynamics of emotions. Emotions are 
seen as consequences, although they are causes of experiences. Infant  experiences start  with 
the synchronic sharing of postures and gestures that are enacted as a common property by the 
partners via imitative exchanges. Purposes guide the infants toward the generation of events 
that can be shared and thus that  gain emotional meaning. This leads our human brain to spot 
emotion everywhere, to attribute mental states of emotion to expressive patterns devoid of 
humanity, as the report on neuroimaging experiments will show.  We will invite you to follow 
Trevarthen (2005)’s stance when he said: “a valid psychology of emotions is concerned with 
motives”

Short bio
Jacqueline Nadel is a CNRS Research Director (grade A), where she leads the team 
“Development and Psychopathology”, co-director of a master program at the University 
Pierre & Marie Curie, and responsible of Autism-Science, an interdisciplinary network of 
research on autism. She has a wide experience of working with low-functioning children with 
autism and healthy infants.  She has more than 120 publications, and has given numerous 
international invited keynote talks and invited lectures. She is a specialist of imitation and 
emotion in normal and impaired development and has edited the books Emotional 
Development (with Darwin Muir, Oxford University Press, 2005) and Imitation in Infancy 
(with George Butterworth, Cambridge University Press, 1999). She has designed innovative 
set-ups allowing to study emotional interaction of very young infants and children with 
autism in embedded situations. She has been and is involved in a number of interdisciplinary 
contracts on various aspects of social and emotional development, including EU-funded 
projects ADAPT, HUMAINE, MATHESIS and FEELIX GROWING. 
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Why language acquisition and intrinsic 
motivation should go hand in hand

Pierre-Yves Oudeyer
INRIA, France

Abstract
Language acquisition and intrinsic motivation are two topics which have mainly been studied 
separately both in developmental robotics and psychology. In this talk, I will show that they 
should in fact be studied together, especially if one wants to build developmental robots that 
may learn language in real complex environments. I will begin by outlining the big challenges 
of language acquisition in human and robots, especially those related to the acquisition of 
meaning. In this context, I will explain that many essential meanings learnt  at  the onset  of 
language are rooted in sensorimotor representations, and affordances in particular. Thus, 
learning linguistic meanings implies the ability to learn motor affordances. While social 
learning mechanisms are essential in this process, I will explain why they are not sufficient in 
real complex sensorimotor spaces in which it  is essential that the robot/human infant  learns 
affordances by self-experimentation. Besides, self-experimentation through motor babbling 
can only be efficient if exploration is guided and organized, which is one of the main 
functions of intrinsic motivation. I will illustrate this point by describing several experiments 
in which a robot  learns efficiently low-level motor skills and affordances driven by a 
computational model of intrinsic motivation used as an active learning heuristics. 
Furthermore, I will argue that intrinsic motivation conceptualized as active learning can also 
be essential to allow true interactive social language learning, where it allows both the teacher 
and the learner to control the growth of complexity in linguistic interactions. I will conclude 
by outlining a number of challenges implied by this joint study of language and intrinsic 
motivation.

Short bio
Since january 2008, Pierre-Yves Oudeyer is a research scientist  in INRIA Bordeaux - Sud-
Ouest, heading the FLOWERS team, in developmental and social robotics. Before that, he 
was a permanent  researcher in Sony Computer Science Lab in Paris for 8 years (2000-2007). 
He studied computer science at  Ecole Normale Supérieure de Lyon, and obtained his PhD in 
artificial intelligence from University Paris VI. He is interested in the mechanisms that allow 
humans and robots to develop perceptual, motivational, behavioral and social capabilities to 
become capable of sharing cultural representations and of natural embodied interaction.

Pierre-Yves Oudeyer’s recent  work in developmental and social robotics focuses on 
sensorimotor development: how can we build robots that can learn a variety of novel reusable 
skills in initially unknown environments, either by themselves or through interaction with 
social peers? In this research, concepts from developmental psychology are imported, 
formalized and implemented in robots. In particular, he is developing systems capable of 
intrinsically motivated exploration and learning, aka artificial curiosity, as well as biologically 
inspired methods of human-robot interaction.

In previous years, he also used robots to study how new linguistic conventions can be 
established in a society of individuals, as well as the mechanisms of language acquisition. 
This had a double objective: 1) contributing to the understanding of the acquisition and 
evolution of language(s), 2) developing new technological approaches for building intelligent 
sociable robots.
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The emergence of words: Modelling early language

acquisition with a dynamic systems perspective

Guillaume Aimetti� Louis ten Bosch�� Roger K. Moore�
�Speech & Hearing Group

University of She�eld
She�eld, UK

{g.aimetti|r.k.moore}@dcs.shef.ac.uk

��Department of Linguistics
Radboud University

Nijmegan, NL
l.tenbosch@let.ru.nl

Abstract

This paper introduces a computational

model of early language acquisition that is

able to build word-like units from cross-modal

stimuli (acoustic and pseudo-visual). The ar-

chitecture, data processing and internal rep-

resentations of the model strives for ecological

plausibility, and is therefore inspired by cur-

rent cognitive views of preverbal infant lan-

guage learning behaviour. In this paper, we

attempt to visualise the emergence and de-

velopment of the models internal representa-

tions as an epigenetic landscape, which is a

popular method for depicting the evolution of

behaviour through the dynamic systems the-

ory. We show that our computational model,

through a general statistical learning mech-

anism, displays similar properties to the dy-

namic systems theory and supports the em-

piricist view of human development.

1. Introduction

An increasingly popular view, of developmental

researchers, is that the brain is a complex dy-

namic system and behaviour is emergent through

self-organization, known as the dynamic systems

theory (DST) (Kelso, 1995, Muchisky et al., 1996,

Newell et al., 2003, Smith and Thelen, 2003,

Evans, 2007). This perspective takes an em-

piricist view of development, stating that the

acquisition of behaviour is based on a general

statistical learning mechanism which is dependent

upon experience and initial control parameters. The

set of behavioural states of the brain defines a land-

scape: “Development, then, can be envisioned as a

changing landscape of preferred, but not obligatory,

behavioural states with varying degrees of stability”

(Thelen and Smith, 1995). This view of develop-

ment, as a constantly evolving landscape, challenges

the nativist view that infants are ‘hard-wired’ with

skills that are at their disposal from birth or appear

at discrete, arbitrary time-steps. As an example,

nativists suggest that young language learners are

born with an innate language acquisition device, a

universal grammar, which allows them to derive the

structure of their native language during a critical

period of infancy (Chomsky, 1975, Pinker, 1994).

In the DST framework, attractor states emerge

and strengthen as a result of the repeating patterns

of the co-operative actions of the systems compo-

nents. Learning can thus be seen as a shift or bifur-

cation into a new attractor state by the destabilisa-

tion of older stable states (Thelen and Smith, 1995).

Behaviour is classed into more or less stable attractor

states and changes between these states have a non-

linear relationship with environmental input. The

behaviour of the system becomes more complex with

age, with the formation of multiple attractor states.

The wider areas encompass certain categories of ac-

tions such as walking, jogging and sprinting.

The timing of developmental changes is controlled

by variation in the control parameters, body or

environmental changes, rather than some kind of

internal clock. Thelen strengthened this theory,

overturning the previously held belief that develop-

mental changes were due to cortical inhibition, by

proving that the stepping reflex in newborns disap-

pears due to an increase in non-muscular body mass

and then reappears when the legs are, once again,

strong enough (Thelen and Fisher, 1982). This

sparked further research into the application of

DST to other motor skills, such as the develop-

ment of motor skills required to reach for an ob-

ject (Savelsbergh and Van der Kamp, 1993). DST

can thus be used to predict the behaviour of a system

with varying control parameters. Thelen argues that

the view of development as an evolving landscape is

not supposed to prescribe behaviour, but represent

a probability of behaviour of a system with varying

control parameters.

The epigenetic landscape is currently a popular

method for visualising behavioural evolution within

developmental science, and was originally drawn in

1957 to display the developmental stability of phe-

notype over time (Waddington, 1957). Figure 1 is
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Figure 1: Diagram of the evolving speech pro-

duction attractor landscape as illustrated by

(Muchisky et al., 1996).

a diagram of the attractor landscape for the ac-

quisition of speech production skills of an infant

as envisioned by current developmental theorists

(Muchisky et al., 1996). The three dimensions rep-

resent a) time, b) emergent behaviour, and c) the

relative stability of the system at any point in time.

Each attractor well is a state of behaviour. The

deeper the well of an attractor, the more stable the

system is when in that state.

It is becoming commonplace to analyse connec-

tionist models, particularly recurrent neural net-

works, as dynamic systems. We use DST to anal-

yse our computational model in an attempt to gain

a deeper understanding of the dynamically evolving

internal representations.

The paper is organised as follows. The next sec-

tion introduces the main components of our compu-

tational model, followed by a keyword detection ex-

periment and results. The penultimate section anal-

yses the internal representations through the DST

theory. The final section concludes the work and

discusses future work being carried out.

2. The computational model

This section describes the Acoustic DP-ngram algo-

rithm (Aimetti, 2009), which is one of three alter-

native implementations of a comprehensive model of

early language acquisition under development in the

FP6 FET project ACORNS
1
. The other two meth-

ods are Non-negative Matrix Factorisation (NMF)

1http://www.acorns-project.org

(Stouten et al., 2007) and Concept Matrices (CM)

(Räsänen et al., 2009). CM is the most symbolic

approach, detecting recurrent patterns of discrete

framed-based codebook labels. DP-ngrams is the

most episodic, finding repeating patterns from the

raw acoustic signal. NMF sits between the two. An-

other di�erence is that CM and DP-ngrams take into

account the dynamics of the speech signal over time,

whereas NMF does not. Instead, NMF processes the

whole utterance to form a representation in mem-

ory and at a later stage decomposes it to discover

structure in the signal.

Figure 2 displays the interactive framework

between the carergiver (carer) and learning agent

(LA), along with LA’s learning processes within

a cognitively motivated memory architecture

(Jones et al., 2006).
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Figure 2: Flowchart of the carer-learner interactive

framework and learning process within a cognitively mo-

tivated memory architecture (Jones et al., 2006).

LA is incrementally presented cross-modal utter-

ances (utt1:⇥) by the carer, which contain the raw

acoustic signal and a pseudo-visual representation of

a keyword (represented as a canonical binary fea-

ture indicating it’s presence within the utterance).

Each utterance contains one of ten keywords (bath,

telephone, mummy, daddy, car, bottle, nappy, shoe,

book and Angus) and has been constructed using a



simple syntax, such as ‘Have you seen the W?’, where

‘W ’ is a keyword. LA carries out recognition using

its internal representations. By this procedure, each

utterance (uttn) is segmented into recognised and un-

recognised acoustic segments which are appended to

long-term memory (LTM). The segment list in LTM

is denoted by X = {x1, . . . , xm}.
Internal representations of keywords and non-

keywords emerge through self-organisation as a re-

sult of clustering the elements of X, on the basis

of acoustic similarity, and accumulating their associ-

ated pseudo-visual features. The learning processes

are discussed in more detail in the following sections.

2.1 Automatic acoustic segmentation

Automatic acoustic segmentation is carried out using

the Acoustic DP-ngram algorithm (Aimetti, 2009).

This algorithm is a modification of two previous

DP-ngram implementations, the first of which was

used to find sub-repetitions within a gene sequence

(Sanko� and Kruskal, 1983), and the second was

used to find sub-repetitions of the output of a pho-

netic transcription (Nowell and Moore, 1995). The

two previous implementations are limited to se-

quences of discrete symbols, whereas the new im-

plementation can handle multi-dimensional feature

vectors. When carrying out experiments directly on

the raw acoustic signal we parameterise it to a series

of 39-dimensional mel-frequency cepstral Coe⇥cients

(MFCC’s), which reflect the frequency sensitivity of

the human auditory system.

This Acoustic DP-ngram method uses a

popular dynamic programming technique, dy-

namic time warping (DTW), in order to

accommodate temporal distortion present

in the acoustic speech signal (similar ap-

proaches include (ten Bosch and Cranen, 2007,

Park and Glass, 2008)). Through an accumulative

scoring mechanism, this method is able to detect

similar portions of speech that commonly re-occur

within utterances (such as phones, words and

sentences) whilst being robust against noise, speech

rate and pronunciation variation. The discovered

sub-sequence portions are termed local alignments.
An additional property of the accumulative qual-

ity score is that longer, more meaningful local

alignments produce a higher final quality score,

thus allowing the system to list them in order of

importance. The three steps of the segmentation

process are outlined below.

Step 1: The carer presents LA with the nth

utterance (uttn), which is stored in short-term

memory (STM) as a set of MFCC feature vectors

(A). LA then carries out template based recognition

by comparing this input representation with each

internal representation (B). Both A and B are

represented as sequences of feature vectors. By

applying the Euclidean Squared Distance between

each pair of feature vectors (vA, vB) we obtain a

distance matrix D = (d(vA, vB)va, vb).

Step 2: D is then used to calculate the accumulative

quality scores for successive frame steps within A
and B using the recurrence defined by (1) to give the

global quality score matrix Q. Higher local quality

scores qi,j are obtained by accumulating successive

local-matches, thus the score for a local-match must

be positive, and scores for non-matches (insertions

and deletions) must be negative to penalise temporal

distortion (2).

qi,j = max

⌥
⌦⌦ 

⌦⌦�

qi�1,j�1 + (s(ai, bj) · d(vi, vj)),
qi,j�1 + (s(�, bj) · |d(vi, v�j)� 1| · qi,j�1),
qi�1,j + (s(ai, �) · |d(v�i, vj)� 1| · qi�1,j),
0

(1)

where,

s(ai, bj) = +1 (local-match score)

s(�, bj) = �1 (insertion score)

s(ai, �) = �1 (deletion score)

qi,j (local quality score)

(2)

Backtracking pointers p are maintained at each step

of the recursion (3).

pi,j =

⌥
⌦⌦ 

⌦⌦�

(i� 1, j � 1), (local-match)

(i, j � 1), (insertion)

(i� 1, j), (deletion)

(0, 0) (initial pointer)

(3)

Step 3: Finally, the optimal local alignment is dis-

covered within Q by backtracking from the highest

quality score max(qi,j) until qi,j equals 0. Multi-

ple local alignments are discovered by repeating this

process while max(qi,j) is greater than the quality

threshold (qthresh).

2.2 The emergence of meaning

The incoming utterance is presented to the system

in two modalities in parallel, acoustic and pseudo-

visual. The pseudo-visual stream contains keyword

information as a canonical representation, each key-

word is assigned a binary value indicating whether

it’s present or not present within the current utter-

ance. It is important to note that there is no lexi-

cal or phonetic information attached to the pseudo-

visual feature and no a priori knowledge is assumed.

As the incoming utterance is segmented into recog-

nised and unrecognised portions, LA is also associ-

ating co-occurring pseudo-visual features to them.

The next section shows an example of the associa-

tive learning process for the first two utterances; for

the sake of clarity we are using orthographic and not

acoustic data for these examples:
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1. Begin life

utt1
Acoustic Visual

‘the bottle is on the seat’ 0 0 0 1 0 0

LA does not recognise any of the utterance as

there are no internal representations yet, so utt1
is stored in LTM as a token in cluster C1.

LTM
C Segments Visual

1 the bottle is on the seat 0 0 0 1 0 0

2. Next utterance

utt1
Acoustic Visual

‘have you seen the bottle’ 0 0 0 1 0 0

LA compares utt2 with the internal represen-

tation C1 and recognises the acoustic segment

‘the bottle’ and associates it with the co-

occuring visual feature. The recognised segment

is stored as a token in C2.

LTM
C Segments Visual

1 the bottle is on the seat 0 0 0 1 0 0

2 the bottle 0 0 0 1 0 0

3 have you seen 0 0 0 0 0 0

The unrecognised portion of utt2 is stored in C3

with no associated visual features as it has al-

ready been recognised and associated with C2.

The associative learning mechanism im-

plemented within this algorithm has been

cognitively motivated by current devel-

opmental theories and experimental data

(Morrongiello et al., 1998, Smith and Yu, 2008),

which shows that infants exploit cross-situational

statistics to aid the word learning process. In this

way, form-referent pairs emerge by grouping the

internal acoustic tokens into clusters of the same un-

derlying unit and accumulating the associated visual

features. A hierarchical agglomerative clustering

(HAC) method is used for the grouping process.

The HAC method initialises each element of X as

separate clusters {C1, . . . Ck} of size 1, and then

merges the two clusters Ci and Cj with the shortest

distance, as defined by (4), to create k � 1 clusters.

d(Ci, Cj) = min
vi⇤Ci,vj⇤Cj

�
d(vi, vj)

⇥
(4)

This process is repeated until d(Ci, Cj) is greater

than the distance threshold T , leaving clusters of

similar word-like segments. Table (1) displays an ex-

ample of the kind of clusters that would be created

by the system. The segments in bold are the clus-

ter centroids, which is the segment with the shortest

total intra-centroid distance as defined by (5).

argmin

va⇤Ci

⇤�

j

d(va, vb)

⌅
vb ⇤ Ci (5)

LTM
C Segments Visual Accum.

1 the bottle is on the seat 0 0 0 1 0 0 0 0 0 1 0 0

2 the bottle 0 0 0 1 0 0 0 0 0 3 0 0
the bottle 0 0 0 1 0 0
the bottle 0 0 0 1 0 0

3 have you seen 0 0 0 0 0 0 0 0 0 0 0 0

the b 0 0 0 1 0 0
4 the 0 1 0 0 0 0 0 1 0 1 1 0

the 0 0 0 0 1 0

a bath 1 0 0 0 0 0
5 bath 1 0 0 0 0 0 3 0 0 0 0 0

bath 1 0 0 0 0 0

Table 1: Clusters of similar word-like units are obtained

with HAC clustering. The item in bold is the golden rep-

resentation and is semantically represented by the accu-

mulative visual features of each token within the cluster.

With experience LA acquires a larger vocabulary of

C with a greater number of representative acoustic

tokens. With a greater number of exemplar acoustic

tokens the system is be able to handle more variation

within the speech signal. The accumulation of the vi-

sual features for each cluster also allows LA to build

an increasing semantic confidence for keywords.

Table 1 shows how the word-like clusters begin to

evolve. The addition of the pseudo-visual modal-

ity allows the system to derive meaning for the spe-

cific task at hand - discovering keyword units. How-

ever, it is not limited to this task as it is a general

purpose pattern discovery mechanism which derives

meaning through cross-situational association, which

concurs with current cognitive theories of human

development (Morrongiello et al., 1998, Kuhl, 2004,

Smith and Yu, 2008).

2.3 Internal representations: a dynamic
systems theory perspective

Describing human development as a dynamic system

has become very popular within the cognitive sci-

ence, where it is visualised as a continuously evolv-

ing epigenetic landscape. Current literature depicts

these theoretical landscapes as hand drawn exam-

ples, such as the diagram of the evolving speech pro-

duction attractor landscape displayed in figure 1.

As observed above, the landscape shows the emer-

gence of behaviour, with varying stability, as a func-

tion of time. Each behaviour is represented as an at-

tractor well and its stability is displayed by its depth
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Figure 3: These figures show the epigenetic landscapes for two of LA’s internal representations. a) shows how meaning

emerges with experience for clusters representing keywords, whereas b) shows that non-keywords will be semantically

noisy and stay relatively flat.

and width. As yet, there does not seem to be anyone

who has attempted to visualise the emergence and

evolution of the internal representations of a com-

putational model of early language acquisition in a

similar fashion.

Figure 3 displays the epigenetic landscapes for two

of LA’s internal representations, which are made up

of a cluster of similar word-like exemplar segments.

The epigenetic landscape in figure 3(a) displays a

cluster with an underlying keyword representation,

and the epigenetic landscape in figure 3(b) displays

a cluster with a non-keyword representation. The

x-axis refers to the pseudo-visual label for each of

the 10 keywords, the y-axis refers to the number of

utterances observed (referred to as probe moments)

and the z-axis refers to the semantic stability of the

cluster. Stability is simply the accumulation of each

visual feature as demonstrated in table 1. Compar-

ing the two epigenetic landscapes in figure 3 it is clear

to see that clusters not representing a keyword are

semantically noisy (fig. 3(b)). Because of this noisi-

ness the system is not able to derive any meaning for

this cluster, however, this does not mean that this

cluster is not important for the language acquisition

process, it just means that it hasn’t been given any

meaning for this particular task.

Figure 4 shows the epigenetic landscape for all in-

ternal representations in LTM, displayed as wells.

The x-axis refers to the cluster space, thus, the width

of each well represents the amount of acoustic vari-

ation from the median within each cluster. Each

cluster is positioned in chronological order along the

x-axis, with the newest being appended to the right-

hand side. The y-axis refers to the probe moment,

which shows the emergence and continuous evolu-

tion of each cluster after every utterance observa-

tion (only the first 12 utterances have been drawn to

preserve clarity). The z-axis refers to the semantic

stability (S), which is defined as the semantic clean-

liness of the cluster Ci calculated using (6)

S =

⇧
max A↵

A

⌃
⇥max A (6)

where A is the accumulative visual feature vector

{a1, . . . , an} for Ci.

After observing the first utterance we can see that

LA stores it as an internal representation, which can

then be used for recognition. It is also clear to see

that the most common repetition is ‘the’, as repre-

sented by the cluster with the median token ‘ the ’.

It is interesting to note that although there are a lot

of occurrences of this item it does not gain semantic

stability. Whereas the two clusters with the median

representations ‘book’ and ‘a shoe’ gradually gain

semantic stability, and represent keywords.

3. Experiments

3.1 Data

The training and test sets have been designed us-

ing a selection of utterances recorded within the

ACORNS project. The database consists of 4000

utterances spoken by two male (M1 and M2) and

two female (F1 and F2) speakers (1000 utterances

per speaker). The training set consists of 450 single-

speaker utterances from F1, containing both acoustic

and pseudo-visual information. The test set consists

of 280 single-speaker utterances from F1 that are

held-out during training, and only contain acoustic

information. The accuracy of the systems internal

representations is measured with a keyword detec-

tion task, LA only observes the acoustic portion of

the test utterance and must reply with the correct vi-

sual feature. Learning is incremental, therefore LA
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Figure 4: Epigenetic landscape of all the internal representations during the first 12 training utterances. Each cluster is

displayed as an attractor well where the acoustic variation is plotted as the width within the cluster space and semantic

stability is plotted as the depth. Two clusters representing an underlying keyword have already begun to emerge from

the noisy clusters - ‘book’ and ‘a shoe’.

is probed after each successive training utterance is

observed with the complete test set, giving us a per-

centage of correct keyword detections at each stage

of development.

3.2 Results

Keyword detection is carried out with the acoustic

DP-ngram algorithm. The test utterance is com-

pared with each internal representation, and the vi-

sual features associated with the cluster achieving

the highest quality score is replied. The system does

not know a priori that each keyword is represented

by only one visual feature and is penalised when re-

plying with multiple, thus making the problem a lot

more di⇥cult but more ecologically plausible.

Figure 3.2 displays the keyword detection accuracy

(y-axis) as a function of the number of utterances ob-

served (x-axis). The green plot with circles displays

the keyword detection accuracy for LA and the red

dotted plot displays chance at 10%.

It can be seen from the figure that keyword repre-

sentations are discovered extremely quickly but that

accuracy never quite reaches 100%. This is because

LA has built an internal representation of an infre-

quently occurring acoustic unit with an associated

visual feature. This means that it will be semanti-

cally very clean and thus weighted with higher im-

portance. A solution to this problem would be to add

a forgetting mechanism in order to prune internal
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Figure 5: Keyword detection accuracy as a function of
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representations that are not useful, where usefulness

is classed as how often it recognises segments.

Table 2 displays the top and bottom twelve in-

ternal representations (tables 2(a) and 2(b) respec-

tively) out of a total of 168 that have been built

within LA’s LTM after observing all training utter-

ances. The internal representations are ranked (R)

in order of semantic stability (Stab), which was cal-

culated using Eq. 6. The centroid token (Cent) of

each cluster is displayed along with its cluster index

(C). Observing the top twelve we can see that all

of the ten keywords have emerged as the strongest

clusters. It is also interesting to see the other struc-

tures that have emerged, for example multiple word

units such as ‘s on the’, single word units such as

‘ reading’ and sub-word units such as ‘ing ’.

(a) Top twelve reps
LTM

R C Cent Stab

1 27 angus 112

2 38 daddy 89

3 45 a bath 89

4 97 car 84

5 34 sho 80

6 22 bottle 67

7 13 nappy 48

8 18 telephon 48

9 20 mummy 48

10 108 book 42

11 32 the 23

12 7 is 21

(b) Bottom twelve reps
LTM

R C Cent Stab

157 11 s on the 0

158 24 has 0

159 28 s a b 0

160 37 co 0

161 50 ook 0

162 56 s on 0

163 15 reading 0

164 84 ing 0

165 85 you 0

166 86 are 0

167 108 to 0

168 111 sits 0

Table 2: Top (a) and bottom (b) twelve ranked clusters

of 168, in order of semantic stability after observing all

training utterances. It can be seen that the top 10 clus-

ters are the keywords

4. Conclusion and discussion

In this paper, we have introduced a novel compu-

tational model of early language acquisition. Our

model automatically segments speech into word-like

units and derives meaning through cross-modal as-

sociation. We have also presented an innovative

method for comparing theoretical ideas on human

development with a computational learning algo-

rithm that is cognitively motivated. The results show

that the system displays similar emergent behaviour

as the DST theory of human development. Compar-

ing the models behaviour with DST it successfully

discovers keywords through self-organisation, gains

knowledge without any pre-specified linguistic rules

and builds internal representations which are contin-

uously evolving with varying stability.

The results show that LA successfully builds inter-

nal representations of keywords and is able to distin-

guish non-keyword representations by their seman-

tic noisiness and flat epigenetic landscape. This in-

formation would allow us to make the system more

computationally e⇥cient by reducing the size of in-

ternal representations by getting rid of or forgetting

unimportant clusters (for this task).

Some developmental theorists believe that the

DST perspective is useful for solving general prob-

lems but argue that the range of di�erent cognitive

behaviours is too great (Aslin, 1993, Port, 2000), and

that it is di⇥cult to incorporate non-observable influ-

ences such as motivation. However, for this task, the

epigenetic landscape is a useful and novel tool for in-

tuitively visualising the emergence and evolution of

internal representations of a cognitively motivated

computational model.

5. Further work

Experimental data shows that young language learn-

ers become faster at recognising words with experi-

ence (Swingley et al., 1999). This could be due to

the development of abstract models of word represen-

tations, allowing the system to generalise. Currently,

the system is using the median token of each cluster

for recognition. This means that the system is build-

ing an ever increasing list of exemplar tokens, but is

not taking advantage of the acoustic variation within

the cluster. In order to do so it would either need to

use all the tokens stored in the cluster or use a mean

representation. The former is not computationally

viable as the token list increases to infinity, and the

latter is at the expense of accuracy. However, using

a mean representation would concur with develop-

mental data showing that infants lose the ability for

finer phonetic discrimination with age.

Further work will also include the discovery of

the fundamental units of speech. Theories suggest

that language learners try to encode information

from their environment in the most e⇥cient way i.e.

through compression (Wol�, 1982). It is hypothe-

sised that the learner begins life discovering exem-

plar representations of commonly re-occurring units

of speech (e.g. sentences, words, syllables etc.) and

then builds prototypic models of them (i.e. an aver-

age of the units in memory). LA attempts to learn in

the most e⇥cient way, therefore, patterns are discov-

ered from a large to small scale. This means that dur-

ing the early stages of language development, the in-

fant will predominantly use internal representations

of sentences and words before it has an optimised

lexicon for its native language. We believe that the

word-spurt phenomena would be replicated in our

model with this learning mechanism in place. When

the system has a robust lexicon of the fundamen-

tal units then new words can be composed by con-

catenating these models rather than starting with an

ever-increasing list of exemplar units.
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Abstract

A model of emotional conditioning is ex-
tended with a cortical model where stimulus
codes compete for activation. This system is
combined with motivational inputs that mod-
ulate both sensory and emotional processing.
The extended model is able to reproduce the
attentional blocking effect. It can also learn to
switch between different sensory targets when
the motivational state changes. The relation
between motivation, emotion, and attention
control is learned through the presentation of
different stimuli in combination with reward.
The model has also been used to control sac-
cades in a stereo vision head that learns what
object are compatible with what motivations.

1. Introduction

Although the importance of emotions (or value sys-
tems) have been stressed for autonomous systems
(Huang and Weng, 2002; Canamero, 2003), it is sel-
dom discussed in relation to stimulus selection. How-
ever, a robot with multiple goals and motives must
be able to learn what objects are useful for each of its
activities. This is even more important for a devel-
oping system where object representations and more
complex motivations need not be present initially.

Stimulus selection can be carried out by assign-
ing an emotional value to each stimulus depending
on how well it satisfies each motivation. The devel-
opment of this ability in children has only recently
come into focus (Hajcak and Dennis, 2009), but it
has been studied extensively in animals. The assign-
ing of an emotional value to a stimulus is most likely
controlled by classical conditioning and is believed to
take place in the amygdala and related structures in
the brain (Rolls, 1995; LeDoux, 1995). As a result of
this learning, processing of motivationally significant
stimuli is enhanced (Morris and Dolan, 2001).

Classical conditioning is often assumed to play a
secondary role in the control of action, it can be suf-
ficient on its own in situations where only a single
action is needed (Balleine and Dickinson, 1998). For
example, once the target stimulus has been selected,
an innate appetitive system could be responsible for
approaching the target and eventual consummation
(Balkenius, 1995). In this case, all that is needed of
the organism is that the correct target stimulus has
been selected. It is also necessary to decide whether
the target should be approach or not.

We have extended a computational model of the
amygdala with two mechanisms that makes this pos-
sible. The first is a selection mechanisms that de-
termines what stimuli should be allowed to remain
active and the second is an approach system that
is activates by the output from the amygdala. It is
assumed that a stimulus that has been paired with
reward is worth approaching. We have also added a
mechanism that relates this choice as well as the emo-
tional reactions to the current motivational state.
Although a lot about the brain system for stimulus
evaluation is not known, a number of computational
models have been proposed and these can be used as
a basis for a robot implementation of an emotional
system.

The system level model is centered around the
function of the amygdala which is a system of in-
terrelated nuclei within the temporal lobe that is re-
sponsible for the conditioning of emotional reactions
to previously neutral stimuli (Rolls, 1995; LeDoux,
1995). The extended amygdala is involved both ap-
petitive (Waraczynski, 2006) and aversive (LeDoux,
1995) learning. The amygdala is not only involved in
the generation of emotional reactions, it also plays a
role in the modulation of different processes in other
parts of the brain.

One effect of an emotional reaction in the amyg-
dala may be to modify the cortical coding of emotion-
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ally charged stimuli Vuilleumier and Huang (2009).
The size of the cortical code for a stimulus increases
with repeated presentation to allow a larger set of
cells in cortex to be tuned to the specific properties of
the stimulus. This effect is enhanced if the presenta-
tion is combined with an emotional reaction. Wein-
berger (1995) has shown that the cortical area repre-
senting a stimulus increases in size when it takes part
in emotional conditioning. This process is thought to
be controlled by the back-projection from the amyg-
dala to cortex through the nucleus basalis of Meynart
(nbM) (Weinberger, 1995). Through these connec-
tions, the amygdala could modulate learning in the
sensory system based on how emotional the current
situation is (LeDoux, 1996) by non-specifically con-
trolling the level of acetylcholin in cortex.

Another effect of amygdala activity could be to
bias processing in cortex towards stimuli that have
an emotional significance. In contrast to the projec-
tions from cortex to the amygdala, the direct back-
projections from the amygdala to cortex influence
the whole of sensory cortex (LeDoux, 1996). These
projections could take part in emotional priming of
sensory processing by enhancing processing (or at-
tention) to stimuli that have emotional significance
(Wilson and Rolls, 1990; Wilson and Ma, 2004). This
type of emotional influence on cortical processing
could lead to a form of biased competition (Desi-
mone and Duncan, 1995) where emotionally relevant
stimuli are able to suppress stimuli that are not of
emotional significance. This mechanism could pos-
sibly explain how emotional reactions can influence
attention (Jolkkonen et al., 2002). Unlike the mod-
ulation of learning, this type of feedback to cortex
must be specific to particular cells in cortex that code
fore the relevant aspects of the stimulus.

If emotional evaluation of stimuli influence activ-
ity in cortex, this modulation will subsequently also
influence learning. A neutral stimulus that is pre-
sented together with an emotional stimulus may be
suppressed and would not be able to form association
with reward or punishment. This is the essence be-
hind attentional theories of blocking (Kamin, 1968;
Mackintosh, 1974; Grossberg, 1975).

The goal of the present system is to investigate
how a computational architecture motivated by the
interactions of different emotional and motivational
structures in the brain can be used as a basis for a
control system for a robot.

2. A System-Level Model

The emotion/motivation system described here is an
extension of the model of the amygdala proposed
by Balkenius and Morén (2000) and further devel-
oped by Morén (2002). This model is described at a
system-level and is not intended to model the details
within each component. Instead it aims at under-

S.CX

Th

CS

OFC

AMY

M

Approach

Rew

Figure 1: Outline of the model. Th: thalamus, S.CX:
sensory cortex, M: motivational state, AMY: amygdala,
OFC: orbitofrontal cortex, Approach: approach system
parameterized by the selected activity in S.CX. See text
for explanation.

standing the overall function of the system of inter-
acting components. Here we add two important new
components that drastically increase the scope of the
model (Fig. 1). The first addition is the inclusion of a
cortical model that allows for biased competition be-
tween cortical codes and makes attentional process-
ing possible. The second addition is a motivational
system that modulates emotional as well as sensory
processing.

The model consists of a number of components
named after different brain regions. In the following
subsections, these labels refer to parts of the model
rather than their biological counterparts.

2.1 Cortex

The cortical subsystem must have two features that
are critical to the operation of the system: First, it is
necessary that multiple cortical codes can be simul-
taneously active. For example, if the robot is simul-
taneously looking at two different objects, it must be
possible for them to activate two different set of codes
in cortex. This is generally a feature of many neural
network model of visual processing, but it excludes
the direct use of models such as the standard self-
organizing map that only allows a single activated
region.

Second, the competition can be modulated by ex-
ternal signals. This idea was put forward by to ex-
plain attentional modulation of cortical codes (Dun-
can, 1998), but is also applicable to the emotional or
motivational influence on cortex.

There are several ways to implement these ideas
and here we have chosen the following. Let Ii be one
input to cortex and let xi be the corresponding cor-
tical activity. To simplify the description, we assume
here that one input component is directly responsi-
ble for the activation of one particular cortical code.
The competition for activation is modeled in three
steps. First xi is set to the input II . Second, the
current bias Bi(t) is calculated as
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Bi(t) = β +
∑

j

mj(t)bji(t) (1)

where β is the bias when no motivational input is
available. This makes sure that all inputs have a
chance of activating cortex. Finally, the following
recurrence relation is iterated until the values of xi

converge:

ξi(t) = [f(xi(t)Bi(t) − θ)]+ (2)

xi(t + 1) =
ξi(t)

‖ξ(t)‖
(3)

where f(x) = x2, θ is a threshold and [x]+ indicates
that the value of x must be zero or larger. As a
result, the cortical activity will be normalized and
activity levels that falls below the threshold will be
removed.

2.2 Amygdala

The amygdala is modeled as an associator that con-
nect its input vector to a single emotional output.
This output can also be inhibited by the output
from the orbitofrontal cortex. A complete descrip-
tion of the amygdala model can be found in (Morén,
2002). Here we only summarises the required equa-
tions without justification.

The output from the amygdala E is calculated as

E(t) =

[

∑

i

xi(t)Vi(t) − EO(t)

]+

(4)

where Ii is the input from cortex and thalamus, EO

is the input from OFC, and Vi are connection weights
that are updated according to

δVi(t) = αxi(t − τ)

[

R(t) −
∑

i

Ii(t − τ)

]+

(5)

The reward (or US) is given by R and and α is the
learning rate. The optimal inter-stimulus interval is
given by τ .

2.3 Orbitofrontal Cortex

The orbitofrontal model receives as input the current
cortical state and the current motivational state M
and learns to inhibit and emotional reaction when it
is not appropriate. As for the amygdala model, the
full explanation and justification for the equations
can be found in Morén (2002), but we include them
here for completeness.

The output from the orbitofrontal cortex is given
by

EO(t) =
∑

ij

Tij(t)Wij(t) (6)

where Tij = xi(t)Mj(t) and Wij are the connection
weights that are updated according to

δWij(t) = βTij(t − τ)RO(t) (7)

The learning rate is set by β and RO is the reward
function. When R #= 0, the reward is set to

RO =

[

∑

i

xi(t)Vi(t) − R

]+

−
∑

i

Tij(t)Wij(t) (8)

and otherwise the following equation is used

RO =

[

∑

i

xi(t)Vi(t) −
∑

Tij(t)Wij(t)

]+

. (9)

2.4 Motivational System

The motivational system is here modeled as a single
vector M where the level of each component indi-
cates the strength of the corresponding motivational
state. We do not model the dynamics of the different
motivations here and M can thus be seen as an input
to the system.

2.5 Approach System

The approach system is based on the notion of at-
tention as selection-for-action (Allport, 1990; Hannus
et al., 2005). The approach system is assumed to lead
the robot toward a stimulus either by locomotion or
by reaching for it. Here, we leave it unspecified what
exact approach mechanism is used as long as its ac-
tions can be parameterized based on the currently
coded stimuli in the cortex.

It is possible that other learning mechanisms
are used within the approach system to learn
the sensory-motor transformations necessary to ap-
proach the target stimulus. The approach system
can be seen as a part of a more general appetitive
subsystem (See Balkenius 1995 for an overview).

The approach system has two inputs. The first
is the cortical coding of the target stimulus that is
used to direct the produced action. The second is the
emotional output from the amygdala that activates
the behavior itself. It is possible that the approach
system produces a behavior directed at the stimulus
currently in focus even without emotional activation,
but it will be less vigorous and will habituate if it
does not lead to a reward (Balkenius, 2000).
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Figure 2: Simulation of acquisition and extinction of a
conditioned emotional response. The connections weights
are shown in the lines marked with Wi and Vi, bji are the
bias weights, x is the cortical activity, CS are the sensory
inputs, Rew is the reward, and CR is the conditioned
emotional response.

3. Computer Simulations

In this section we show the results of a number of
computer simulations of the complete system to il-
lustrate its function in different situations. All simu-
lations were run using the Ikaros system (Balkenius
et al., 2009). Only two stimuli and two motivational
states were used to simplify the results but all simula-
tions can be extended with larger number of stimuli.

3.1 Stimulus Evaluation

This simulation shows how the model can learn
which stimuli predict reward and how these pre-
dictions can change over time. This is an exam-
ple of standard classical conditioning and extinction
(Pavlov, 1927). The developments of the different
values over time are shown in Fig. 2.

During the acquisition phase the stimulus CS1 is
paired with the reward (Rew) and as a result the
associative weight V1 increases and allows the stim-
ulus to produce the conditioned emotional response
CR. The motivational bias b11 also increases to en-
hance attention to the stimulus in cortex. During
the extinction phase, the stimulus is presented on its

own and as a result the inhibitory modulation from
OFC (W1) will increase an suppress the emotional
response. At the same time, the motivational bias
b11 will decrease again.

Note that after extinction, the emotional response
is only inhibited by the current motivational state
through orbitofrontal cortex. If the motivation
changes, the behavior can thus reappear quickly
which is what happen in animals when the extinction
context changes (Bouton and Nelson, 1998; Morén,
2002).

The emotional reaction that is produced can be
seen as an evaluation of the stimulus. A larger reac-
tion indicates a more valuable stimulus which should
be attended as closely as coded by the bias and ap-
proached as vigorously as coded by the CR which in
turn will activate the approach system.

3.2 Attentional Blocking

Blocking is the well known phenomenon that a stim-
ulus that is presented together with an already con-
ditioned stimulus will not acquire an association with
the reward (Kamin, 1968). This result was originally
explained as a the result of attentional competition
(Mackintosh, 1974), but has later mainly been ex-
plained as a competition for association with the re-
ward (Rescorla and Wagner, 1972).

We simulated this phenomenon with the model as
illustrated in Fig. 3. The system is assumed to be in
motivational state 1. First CS1 is presented together
with the reward a number of times which leads to
increases in V1 and b11. This is followed by the pre-
sentation of both CS1 and CS2 together with the the
reward. As V1 has already reached its asymptotic
value, no learning occurs in this phase. Finally, CS1

and CS2 are individually tested and as can be seen
only CS1 produces an emotional response.

In addition to showing that the system reproduces
the blocking phenomenon, the simulation also illus-
trates that the two theories of blocking are not mu-
tually exclusive since the system incorporates both
mechanisms. Attentional blocking is used to select
emotionally relevant stimuli in cortex and competi-
tion for associative strength is used within the amyg-
dala to limit the range of the learned associations.
Attentional selection of this type is essential in more
complex learning situation as illustrated by the next
simulation.

3.3 Switching

This simulation demonstrates that the model will se-
lect a stimulus that has been paired with reward in
the current motivational state when several stimuli
are simultaneously present (Fig. 4). First the sys-
tem is conditioned with CS1 in motivational context
M1, then it is conditioned to CS2 in motivation M2.
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Figure 3: Attentional blocking. The frame marks the
compound conditioning trials that are followed by two
tests with CS1 and CS2 respectively. Refer to Fig. 2 for
an explanation of the different labels.

Finally, the system is tested in motivational state
M1 with both stimuli. As can be seen in the figure,
only the stimulus compatible with motivation 1, that
is CS1, is active in cortex. When the motivational
state is subsequently switched to M2, the cortical
code also switches to activate stimulus CS2 instead.

In this simulation, there is only a positive bias from
the motivation on the cortical activity. The selection
is the result of biased competition within cortex. The
reason why W1 and W4 increases is that the associa-
tions undergo extinction during the final test phase.

We also tested a slightly more complicated situa-
tion where both stimuli were presented in both moti-
vational contexts, but only rewarded in one (Fig. 5).
There are four distinct training regimes that are re-
peated four times:

• M1 : CS1 + Rew

• M2 : CS1

• M1 : CS2 + Rew

• M2 : CS2

As a result, both stimuli undergo extinction in one
motivational context. Finally, the system is tested in

Figure 4: Switching of attention as a function of moti-
vational state. See Fig. 2 for an explanation of the dif-
ferent labels.

motivational state M1 with both stimuli present. Ini-
tially, the system selects stimulus CS1, but since it
does not receive any reward, the emotional response
CR gradually decreases. At the same time, the bias
for CS1 in M1 decreases until the system is ready to
try out CS2 instead. At this point, the emotional
response is very weak, but will be sufficient for the
system to investigate CS2 if there is no other stim-
ulus present. Since CS2 is not rewarded either, the
system then alternates back to CS1 a second time
and then back to CS2, before the emotional reaction
is completely extinguished.

This simulation shows that the model can learn
what stimulus satisfies which motivation also in sit-
uations with inhibition. The cortical competition is
essential in this case since the inhibiting stimulus
would otherwise have shut off the emotional reaction
for the stimulus that was conditioned in the current
motivational state.

4. A Robot Implementation

Preliminary tests have been performed with a stereo
head that is controlled by the model described above
(Fig. 6). The same code was used as in the simula-
tions above except that the input and outputs were
connected through a number of extra Ikaros modules
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Figure 5: Switching of attention after repeated acqui-
sition and extinction in different motivational contexts.
(See Fig. 2 for an explanation of the different labels.)

Figure 6: A stereo head used to test the system with
visual stimuli.

to a robot head.
In addition, the two cortical nodes are replaced

with a full saliency map where different features at
different locations compete for activation. The im-
plementation is based on the learning saliency map
described by Balkenius et al. (2008), which in turn
was inspired by the work of Itti and Koch (2001).

The saliency map is used to select the target stim-
ulus which is then used as a parameter for the ap-
proach system which in this case is the saccade sys-
tem that moves the gaze toward the selected stimu-
lus. No other action is currently implemented.

In the tests, objects of two different colors were
used as stimuli and the saliency map was trained ex-
actly as in the switching simulation described above.
The reward and motivational state was externally
supplied and the reward was triggered by a saccade
to the correct stimulus.

Apart from showing that the model can be used in
a robot, this implementation also clearly illustrates
the similarity between cortical competition, atten-
tional blocking and saliency maps.

5. Discussion

The features of a motivational/emotional system
that we have described above are essential in a
robotic system that develops its cognitive abilities
over time. As it encounters new objects in the envi-
ronment or learn new skills, it needs to learn what
actions and objects fit which motivations. We believe
that the system-level model developed here contains
several fundamental components of such a system.
The model has a number of attractive properties. It
is reasonably similar to the corresponding system in
animals and it is computationally sound while incor-
porating a number of useful mechanisms. It bridges
the gap between models of conditioning and models
of attention control to allow classical learning mech-
anisms to control attention. It also suggests a way to
incorporate modulation by the current motivational
state on sensory and emotional processing.

The results are comparable to our earlier model-
ing of task-switching in instrumental learning (Balke-
nius and Winberg, 2004). The main difference is that
there is only one action in this system and that corti-
cal competition between different stimuli is necessary
here while that is not the case in the instrumental
situation. The model resembles the model proposed
by Mannella et al. (2007) in that it includes interac-
tion between motivational states and emotional re-
sponses, and learns to select behavior depending on
the motivational state. The present model is differ-
ent in that it attempts to explain the modulation of
sensory processing rather than action selection.

There are a number of additional components that
will need to be added for a more flexible and less spe-
cific learning ability. The components should work in
close cooperation wit the subsystems described here.
The approach system needs to habituate when no
reward is received. A mechanism that can handle
this was described by Balkenius (2000). It is also
necessary to include instrumental learning to allows
learning of flexible behavior sequences. Instrumen-
tal learning could also in principle be under motiva-
tional control in the same way as emotional learning
although the situation is probably more complex in
humans and animals (Balleine and Dickinson, 1998).
Both instrumental and classical conditioning could
additionally interact with habit systems that learns
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to produce behavior after repeated rehearsals.
There is also a need for adaptive sensory-motor

mappings that learn goal-directed behavior that the
other learning systems can activate or inhibit. One
final feature that is missing in the present system is a
mechanism that can handle incentive motivation (see
Balkenius 1995). This is something that we want to
add in the future.

We will also extend the robotic implementation of
the system to include some form of manipulation and
not only a head. The general structure of the control
will be very similar to what we have now, except that
the appetitive approach behavior will contain several
segments such as visual fixation followed by reaching
and possibly exploration or ingestion.

In summary, we have shown how a model of emo-
tional conditioning can be extended with multiple
motivations to learn what stimuli are rewarding in
each motivational state. In addition, we have shown
how the extended model can handle competition for
attention in a cortical subsystem. Both these abili-
ties are essential for a robot that is engaged in many
different activities motivated by different goals or
needs.
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Abstract 
 
Pedagogy theory (Csibra & Gergely, 2006; 2009) 
suggests that adults and infants comprise a co-evolved 
teaching-learning system.  Adults spontaneously 
provide “ostensive cues” which function to engage 
infants’ attention and indicate a learning scenario.  The 
current paper presents evidence that infant-directed 
action (“motionese”) and speech-action alignment 
(“acoustic packaging”) likely function as ostensive cues 
in the context of object-use demonstrations.  Motionese 
has been documented in naturalistic learning scenarios 
and appears ubiquitous among adults, including non-
parents.  Further, infants attend more to motionese than 
to standard adult-directed action.  On-going research is 
underway to evaluate the learning benefits (e.g., 
enhanced imitation) in the presence of these cues. Any 
information we can glean about the behavior of human 
adults (as natural teachers) and infants (as naive 
learners) supports attempts to model efficient learning 
in robots. 
 
1. Introduction 
 

Human infants treat other human agents as a 
special stimulus, paying more attention to stimuli with 
faces, hands, and particular kinds of human-like 
movements than to other kinds of stimuli (e.g., Frank, 
Vul, & Johnson, 2008; Legerstee, 2005; Simion, 
Regolin, & Bulf, 2008)  Theories to explain this 
include Tomasello’s (Tomasello & Carpenter, 2007) 
“shared intentionality” theory, which argues that babies 
are fundamentally motivated by sharing attention and 
goals with others and Meltzoff’s (2007) “like me” 
theory, which argues that babies have an innate system 
that allows them to map their own movements to the 
movements of others and vice-versa.  A third theory, 
the theory of “pedagogy,” (Csibra & Gergely, 2006) 
focuses on specific cues that garner infant attention and 
flag an interaction as a “learning” scenario.  These so-
called “ostensive cues,” such as eye contact and calling 
the infant’s own name, are not only the cues infants 
preferentially attend to but are also the cues that adults 
spontaneously emit when interacting with babies.  
According to this theory, adults and babies – or human 
teachers and learners more generally – comprise a co-
evolved system.  All three of these ideas (intrinsic 
motivation, like-me mapping, and humans’ natural 
teaching tendencies) have been explored recently in 

epigenetic robotic systems (see Thomaz & Breazeal, 
2008; Oudeyer, Kaplan, & Hafner, 2007).   

The work described in this talk investigates a set 
of behaviors that we think function as ostensive cues 
when adults teach babies how to interact with new tools 
and objects.  This research provides additional 
information about the human teaching-learning system, 
and can thus support the on-going attempts to model 
learning in robots, such as the socially-guided machine 
learning theory proposed by Thomaz & Breazeal 
(2008).   

The set of behaviors explored here includes so-
called “motionese” or “infant-directed (ID) action” 
(Brand, Baldwin & Ashburn, 2002) as well as “acoustic 
packaging” or “speech-action alignment” (Meyer, 
Hard, Brand, & Baldwin, 2008).  Below, I will describe 
the cues themselves, as they are used by adults in 
various contexts, as well as evidence that these cues 
provide benefits to infants’ attention and learning. 

 
2. Infant-Directed Action 
Modifications (“Motionese”) 
 

The first studies of infant-directed (ID) object 
demonstrations attempted to establish a set of action 
modifications that were relatively consistent across 
adults.  We first asked mothers of infants to 
demonstrate five novel objects to either their infant or 
to an adult partner.  Mothers were told we were 
investigating how people demonstrate to one another, 
but were not told of the infant-adult comparison.  We 
measured their behavior on a set of eight features that 
we thought might function to highlight action 
boundaries and enhance infant attention.  We found 
significant modifications for six features.  We found 
that ID demonstrations of novel objects tended to be 
enacted with greater proximity to the partner, a larger 
range of motion, and more enthusiasm, interactiveness, 
repetitiveness, and simplification when compared to 
adult-directed (AD) demonstrations (Brand, et al., 
2002).  See Figure 1. 

In a second study (Brand, Shallcross, Sabatos, & 
Massie, 2007; See Figure 2), we attempted to measure 
several features in a more precise way.  As a way to 
quantify the variable of interactiveness, we measured 
the number and length of gaze bouts, and the number of 
exchanges of the object between the demonstrator and 
partner.  As a way to further quantify simplification, we 
measured the number of distinct action types mothers 
demonstrated during each turn.    
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Figure 1.  Motionese features as found in Brand et al., 
(2002).  All features but punctuation and rate show 
significant differences between ID and AD action. 
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Figure 2.  Modifications to eye gaze, object exchanges, 
and action types per turn for 6- to 8- and 11- to 13-
month-olds as found in Brand et al., (2007). 

  

 
These analyses revealed that ID demonstrations 

included more eye contact, more exchanges of the 
objects, and fewer action types per turn than AD 
demonstrations.  They also provided the first evidence 
of mothers discriminating in their action 
demonstrations for infants of different age groups: 6- to 
8-month-old infants, relative to 11- to 13-month-old 

infants, received more eye gaze divided into fewer, 
longer bouts, and also received fewer turns with the 
object.  We suspect that both of these modifications 
represent mothers’ sensitivity to their infants’ ability to 
control their own attention, which is developing rapidly 
across this period (Ruff & Rothbart, 1996). 

Research from other labs confirms these findings 
and offers evidence of other ID action characteristics.  
For instance, Rohlfing, Fritsch, Wrede, & Jungmann 
(2006) found that demonstrations to infants were 
slower in pace (i.e., contained longer pauses) and used 
large, inefficient movements (similar to our “range of 
motion” variable).  The work of Gogate and her 
colleagues (e.g., Matatyaho & Gogate, 2008) indicates 
that looming and shaking motions – in particular, in 
synchrony with utterances – characterize the actions of 
mothers when speaking to young infants.    

As our first studies used only mothers, we 
wondered at the scope of these modifications.  
However, Rohlfing et al., (2006) also included fathers 
in their sample, and reported no differences between 
mothers and fathers.  To test whether such 
modifications are limited to parents, we (Brand, 
Ragnarsson, & Casperson, 2009) asked a set of non-
parent adults to demonstrate objects as if for an infant 
and an adult audience.  We found that non-parents 
similarly discriminated among audiences in their 
demonstrations, particularly with regard to repetition, 
range of motion, and smiles.  We also found that 
experience with or comfort with infants was not related 
to ID modifications, suggesting a minimal role for 
learning in the use of these modifications.   

Additional recent work has focused on the 
structure and timing of specific cues within the set of 
motionese modifications.  For instance, motionese 
comprises enhanced eye gaze and repetition; however, 
it is not clear precisely how these features are used or 
what their function is.  Regarding eye gaze, we would 
expect mothers to make eye contact in between action 
units – perhaps as a way to check infant attention 
and/or to mark the unit onset or offset.  Regarding 
repetition, our first hypothesis, expressed in Brand et 
al., (2002), was that when demonstrating a series of 
actions, mothers would most likely break actions into 
the smallest units and repeat at the unit level, rather 
than repeating sequences of action units.  Using the 
global coding scheme, this is in line with what we 
found.  However, recent insight suggested that 
mothers’ repetitions of units versus sequences would 
likely depend on the nature of the object she was 
demonstrating: when the sequence is crucial to reach a 
salient goal (a so-called “enabling sequence” [Bauer, 
1992]), we predicted mothers would repeat at the 
sequence level; when each unit could be considered a 
goal in itself and there was no hierarchical end goal, we 
predicted mothers would repeat at the unit level. 

We recently collected a new sample of 40 mother-
infant dyads to explore these issues.  Regarding eye 
gaze, we found that, as predicted, onsets and offsets of 
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gaze and onsets and offsets of actions were more 
aligned than expected by chance (Brand, Hollenbeck, 
Kominsky, & Hard, in preparation). Regarding 
repetitions (Brand, McGee, Kominsky, Briggs, 
Grueneisen, & Orbach, in press), we tested our 
hypothesis by giving mothers objects of two distinct 
types: objects for which a sequence of three different 
actions was required to produce a salient end-goal, such 
as: push buttons, slide switch, open top of a key 
lockbox (see Figure 3a); and objects on which you 
could also perform three distinct actions, but the 
actions did not lead to an end-goal, such as shaking, 
twisting, and tilting a puzzle toy (see Figure 3b).  This 
distinction was not mentioned to them, and the six 
objects were presented in random order.  

 
Figure 3.  Examples of end-goal (lockbox) and non-
goal (puzzle) objects. 

3a.     3b. 
  

 
 

We assigned each distinct action (such as pushing 
buttons) a letter (e.g., A), and then transcribed mothers’ 
demonstrations according to this coding scheme.  A, B, 
and C always represented the three primary actions we 
suggested to mothers.  Additional letters were added 
for other common actions.  For instance, for the 
lockbox object, A was pressing the buttons, B was 
sliding the latch, and C was opening the top.  For many 
mothers, they went on to take the key out, put the key 
back in, put the lid back on, and shake the object, so 
these were assigned codes D-G. 

We then analyzed these transcriptions in three 
ways.  First, we asked, of all two-unit series, what 
proportion were repetitions (e.g., AA) versus sequences 
(e.g., AB).  We found that repetitions (AA) comprised 
a larger proportion of series on non-goal (arbitrary-
sequence) objects (46%) than on end-goal (enabling-
sequence) objects (13%).  Next, we asked how often 
mothers completed the full sequence – in order and 
without interruption – of the three actions provided for 
them on the instructions (ABC).  We found, across all 
subjects, they were more likely to repeat the full 
sequence for the end-goal objects than the non-goal 
objects.  In fact, for end-goal objects, 81% of 
demonstrations went through the complete sequence at 
least one time, and 38% went through the whole 
sequence two or more times.  For non-goal objects, 
only 18% of demonstrations went through the entire 
sequence at least once.  Finally, we computed the 

transitional probabilities (TPs) from any action on an 
object to any other action (see Figure 4).  TPs represent 
the percentage of each action (A) followed by another 
action (B).  Thus, high TPs from an action to itself 
(AA) represent repetitions of units, while sets of high 
TPs from one action to the next to the next in a cycle 
(AB, BC, CD, DA) represent repetitions of sequences. 

In sum, we found that when demonstrating objects 
with no salient end-goal – similar to those used in 
previous studies – mothers tended to repeat the 
individual units (e.g., shake, shake, shake).  However, 
when demonstrating objects whose actions form a 
coherent enabling sequence leading to a salient end-
goal, we found that mothers were more likely to repeat 
the sequence, rather than the individual units.  
 
Figure 4.  Transitional probabilities for objects with 
and without a salient end-goal.  
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Finally, ongoing research in my lab is 

investigating the timing of mothers’ behaviors in 
relation to infant attention as the interaction unfolds.  
To examine this, we are using sequential analysis in a 
sample of 11 mothers to determine the most common 
patterns of behavior across the demonstration 
(Kasparian & Brand, in progress).  One common 
sequence involves mothers demonstrating an action, 
and infants subsequently beginning to attend and to 
manipulate the object.  At this point, mothers often do 
nothing (merely watching) until infants lose attention, 
at which point they demonstrate again, often using the 
largest, noisiest action available.  Thus mothers often 
act when – and only when – it is necessary to re-engage 
infants’ attention.  They seem to be sensitive to 
repeated disengagements by infants, however; after 
more than one cycle of this pattern with a given object, 
mothers tend to respond to loss of attention by 
switching to a new object.   

 
3. Benefits of Motionese 
 

Now that a set of action modifications has been 
identified, an important goal of the research is to 
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determine the degree to which these cues are relevant 
to infant learning.  As a first step, we investigated 
whether these cues preferentially attract infant attention 
(Brand & Shallcross, 2008).  Using a video 
preferential-looking paradigm, we showed 6- to 8- and 
11- to 13-month-old infants side-by-side video clips of 
mothers demonstrating a single object in either an ID or 
an AD manner.  These were videos of two different 
mothers – one who had been interacting with her infant, 
and one who had been interacting with her husband.  
Only the mothers and the objects (not the partners) are 
visible on the screen.  We used still pictures to rule out 
the possibility that infants’ preference was based on the 
physical features (e.g., hair style) of the two mothers.  
See Figure 5. 
 
Figure 5.  Still frame of mothers demonstrating to an 
infant (left) and adult (right).   
 

 
 

In Study 1, we found that 6- to 8-month-old 
infants preferred to look longer at the video of the ID 
demonstration.  They did not have a corresponding 
preference for the still pictures.  In order to determine 
whether infants’ preference for ID action was due 
solely to the mothers’ facial expressions and eye gaze, 
in Study 2 we tested a new set of infants after digitally 
blurring the faces of the mothers, leaving only the body 
movements visible.  We tested both 6- to 8- and 11- to 
13-month-olds in Study 2.  We found that at both ages, 
and even with the facial features blurred, infants still 
had a preference for the ID actions.  See Figure 6 for 
results from both studies.   
 
Figure 6.  Infants prefer motionese, even with mothers’ 
faces blurred (Brand & Shallcross, 2008).  All 
conditions except “6-8 standard (Study 2)” show a 
preference for ID action that is significantly greater 
than chance (50%). 
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A computational model of attention (Nagai & 
Rohlfing, 2009) suggests that in addition to arousing 
greater infant attention than AD action, ID action may 
in fact guide infant attention to specific locations in the 
scene.  Nagai and Rohlfing found that based on features 
such as motion, color, and intensity, their model 
“attended” most to parents’ hands and task-relevant 
objects (e.g., stacking cups) in both ID and AD action 
demonstrations.  During the task, however ID action 
drew preferentially more attention to the face than AD 
action; just before and after the task, on the other hand, 
ID action drew preferentially more attention to the 
cups.  The authors argue that by holding their faces still 
before and after the task, parents draw attention to the 
start and end state of the objects, thus helping infants to 
learn about the important change of state.   

Having determined that ID action cues indeed 
attract infant attention, our next question is whether ID 
action benefits infants’ learning from the 
demonstrations.  Several studies are underway to 
investigate whether children are able to imitate novel 
actions more faithfully if they are shown in ID action as 
opposed to AD action (Brand & Casperson, in 
progress; Brand & Jemmoua, in progress; Williamson 
& Brand, in progress).  These imitation studies look for 
benefits across a wide age range (6 months to 3 years), 
with actions that range from a simple button-press to a 
complex causal sequence, and they make use of both 
experimentally-controlled action videos as well as 
mothers’ own demonstrations.   

 
4. Speech-Action Alignment 
(“Acoustic Packaging”) 
 

One additional cue that adults may use to support 
infants’ learning about actions is their speech.  Even 
before infants understand the content of speech, there is 
reason to believe that the timing and prosody offers 
rich information to infants (e.g., Fernald, 1989).  
Further, the Intersensory Redundancy Hypothesis 
(Bahrick, Lickliter, & Flom, 2004) suggests that 
information across multiple modalities that occurs in 
synchrony attracts infants’ attention.  The argument is 
that when making sense of the physical world, infants 
would do well to attend to events that provide 
redundant information across modalities; for instance, a 
ball bouncing on a surface will provide information 
about tempo and intensity in both visual and auditory 
modalities.  Thus, this kind of co-occurrence helps 
infants find coherent events within the flow of 
information.  By providing speech cues that align 
systematically with their actions, parents may be 
exploiting this tendency on infants’ part to attend to 
cross-modal synchrony.  The use of this type of 
alignment has been referred to as “acoustic packaging” 
(Brand & Tapscott, 2007; Hirsh-Pasek & Golinkoff, 
1996). 
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Evidence supports the claim that if parents 
provide such alignment, infants can make use of it.  For 
instance, Gogate her colleagues have shown that 
synchrony between words and movements of objects 
helps young infants learn the associations between 
word and object (Gogate & Barick, 1998). In our lab 
(Brand & Tapscott, 2007), we found that in an 
experimental setting, infants could learn which events 
were “packaged” by audio and which were not, after 
only a few repetitions.     

To investigate parents’ use of acoustic packaging, 
we (Meyer, et al., 2008) offered mothers two sets of 
objects to demonstrate to their 6- to 14-month-old 
children (e.g., stacking rings).  See Figure 7a.  We then 
coded the onsets and offsets of each utterance and of 
each action.  Based on the number of utterances and 
actions within each demonstration, we computed the 
degree to which one would expect them to be aligned 
just due to chance (following Zacks, Tversky, & Iyer, 
2001).  We found that onset and offset times were 
aligned more than expected by chance.  Further, we 
divided utterances into attention-getting, goal-setting, 
description, and celebration, and we found that 
utterances that were aligned or paired with actions were 
more than twice as likely to be action descriptions than 
any other type of utterance.  See Figure 7b.  We suspect 
(and are currently testing to confirm) that the prosodic 
contours of these different utterance types are 
discriminable by infants; thus they may come to learn 
that a particular melodic contour tends to co-occur with 
salient actions.  These contours may even directly 
affect infant attention such that it is focused on the 
actor just as she begins and carries out the relevant 
movements.   
 
Figure 7.  Mothers demonstrating a task such as 
stacking rings (a) tend to align (pair) their utterances 
with their actions, especially for utterances that are 
action descriptions, e.g., “And now the red one!” (b). 
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Recent computational work indicates remarkable 
alignment between speech and actions in both adult-
infant and adult-adult interactions (Rolf, Hanheide, & 
Rohlfing, 2009; Schillingmann, Wrede, & Rohlfing, 
2009; Wolf & Bungmann, 2006).  To illustrate, 
Schillingmann et al. measured the overall amount of 
motion happening in each frame of a video recording 
and parsed it into “actions” at local motion minima.  
They parsed the speech at pauses.  They found that 

action and speech were more likely to be packaged in 
ID demonstrations than AD demonstrations.  Rolf et al. 
(2009) provide a convincing model of infants’ attention 
being drawn by this packaging.   They first determined 
the change in intensity in any pixel (typically 
representing movement across that spot) and the 
change in intensity in the auditory stimulus and noted 
the correspondences.  Thus anything that moved in 
synchrony with a sound was highlighted in the resulting 
averaged map (or “mixelgram”) of synchrony.  Using 
this technique, they again found more synchrony in ID 
than AD action, and in an exploratory sample of two 
participants, they found that synchrony tends to occur 
most often in the realm of the demonstrators’ face and 
hands, suggesting that low-level detection of synchrony 
by infants may indeed be effective at directing their 
attention to the relevant portions of an action scene. 
 
5. Summary 
  

Pedagogy theory argues that adult experts and 
infant novices are a co-evolved system for teaching and 
learning (Csibra & Gergely, 2006; 2009).  According to 
this theory, adults spontaneously offer “ostensive cues” 
when interacting with infants, particularly in the case 
when they are providing information meant to be 
learned and generalized by infants.  Here we have 
offered evidence that these cues extend to the object-
manipulation domain.  Adults – including mothers, 
fathers, and non-parents with a range of experience 
with babies – provide action that is larger, more 
repetitive, and simplified; that appears well-timed to 
capture and sustain infant attention; and that provides 
social-emotional cues such as eye gaze and smiles.  
These cues are exactly the sort predicted by pedagogy 
theory to trigger infants’ inherent attention and learning 
capacities.  Evidence demonstrates that these features 
are sufficient for preferentially engaging infant 
attention; on-going work is testing whether they indeed 
facilitate infants’ learning from and re-enacting adult 
demonstrations.   

Given that these features appear to arise naturally 
in adult teachers when interacting with infants, efforts 
to make teachable robots that behave in infant-like 
ways appears to be well-founded.  For instance, both 
Nagai, Mull, & Rohlfing (2008) and Oudeyer et al. 
(2007) make use of a robot’s eye gaze to make its 
mental state more “transparent.”  Particularly when the 
robot also makes eye contact, and is “cute” as in Nagai 
et al., this may trigger adults’ best teaching strategies.  
Thus, robotics and developmental researchers can 
continue to provide mutually beneficial insights about 
the optimum systems for teaching and learning.     
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4:*4*$#5#*)%. & /*)51)5$I &@* & $%8 & 50%5 &8*": & %)D1:&

/:1%51$ & #) & (1 & 501 & 1a41/5%5#*) & 50%5 & 8*" & W#..&

X1/*(1&6#*.1)5&,*1$&)*5&(1%)&50%5 &A &0%61&%)8&
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6%7%3,"*%&')1&-)/,(#13)#&'%01('#,&

3&/1)5:%.&%$41/5&*=&,161.*4(1)5&#)&0"(%)$&%),&

(%)8 & %)#(%.$ & #$ & 501 & 1a51)5 & 5* & W0#/0 & 501&
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U&A5&/%)&X1&%:D"1,&50%5&#)&0"(%)&$*/#15#1$&50#$&4:*X.1(&*=&
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1(X*,#(1)5&%(*)D&0"(%)$&/*(1$&5*D1501:&W#50&

% & 4:*=*"), & :16*."5#*) & #) & 501 & W%8 & % & 41:$*)&
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Abstract

Active perception refers to a theoretical ap-
proach grounded on the idea that percep-
tion is an active process in which the actions
performed by the agent play a constitutive
role. In this paper we present two different
scenarios in which we test active perception
principles using an evolutionary robotics ap-
proach. In the first experiment, a robotic arm
equipped with coarse-grained tactile sensors is
required to perceptually categorize spherical
and ellipsoid objects. In the second experi-
ment, an active vision system has to distin-
guish between five different kinds of images of
different sizes. In both situations the best in-
dividuals develop a close to optimal ability to
discriminate different objects/images as well
as an excellent ability to generalize their skills
in new circumstances. Analyses of evolved be-
haviours show that agents are able to solve
their tasks by actively selecting relevant infor-
mation and by integrating these information
over time.

1 Introduction

Traditionally, Cognitive Science and Artificial Intel-
ligence tended to view intelligence as the result of a
chain of three information processing systems, con-
stituted by perception, cognition, and action. Ac-
cording to this view, the perception system operates
by transforming the information gathered from the
external world (sensations) into internal representa-
tions of the environment itself. The cognitive system
operates by transforming these internal representa-
tions into plans (i.e. strategies for achieving certain
goals in certain contexts). Finally, the action sys-
tem transforms plans into sequences of motor acts.
This is what Susan Hurley has labelled the “Cogni-
tive Sandwich” view of intelligence (Hurley, 1998),
according to which perception and action are con-
sidered as peripheral processes separated from each
other and from cognition, which represents the cen-
tral core of intelligence.

The criticisms raised to this general view during
the last two decades, however, led to the develop-
ment of a new framework according to which percep-
tion, action, and cognition are deeply intermingled
processes that cannot be studied in isolation (Clark,
1997; Pfeifer and Scheier, 1999). According to this
view, behaviour and cognition should be conceptu-
alised as dynamical processes that arise from the con-
tinuous interactions occurring between the agent and
the environment (van Gelder, 1998; Beer, 2000).

This new view of cognition led also to a new ap-
proach to categorisation. Categorisation represents
one of the most fundamental cognitive capacities dis-
played by natural organisms, being an important
prerequisite for the exhibition of several other cog-
nitive skills (Harnad, 1987): for example, it is in-
volved in any task that calls for differential respond-
ing, from operant discrimination to pattern recog-
nition to naming and describing objects and states-
of-affairs. The “Cognitive Sandwich” view of intelli-
gence tends to look at categorisation by focusing on
processes that are passive (i.e., the agents can not
influence their sensory states through their actions)
and instantaneous (i.e., the agents are demanded to
categorise their current sensory state). The new
paradigm to the study of cognition mentioned above
demands to look at categorisation processes that are
“active” and possibly distributed over time.

Active perception can be studied by exploiting
the properties of autonomous embodied and situ-
ated agents, in which perception is strongly influ-
enced by the agent action (on this issue, see also
Gibson, 1977; Noë, 2004). Nevertheless, our abil-
ity to build artificial systems that are able to ex-
ploit sensory-motor coordination is still very lim-
ited. This can be explained by considering that,
from the point of view of the designer of the robot,
identifying the way in which the robot should inter-
act with the environment in order to sense sensory
states that might facilitate perception is extremely
difficult. One promising approach, in this respect, is
constituted by adaptive methods in which the robots
are left free to determine how they interact with en-
vironment (i.e. how they behave in order to solve
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their task). There are several works that success-
fully employed such methods for the control of em-
bodied agents in categorisation tasks. For example
the works described in (Nolfi, 2002) and in (Beer,
2003) demonstrate how categorisation can emerge
from the dynamical interaction between the agent
and the environment. Other works have shown how
an active perception system can act in order to per-
ceive discriminating stimuli that greatly simplify the
discrimination task (see, for example Scheier et al.,
1998; Nolfi and Marocco, 2002). In some cases, how-
ever, sensory-motor coordination is not sufficient to
experience well differentiated sensory patterns for
different categories. Thus, in these circumstances
the agents are required to integrate “ambiguous”
sensory-motor states over time. So far, only a few
studies have shown evolved agents that are able to
cope with this kind of problems (e.g. Gigliotta and
Nolfi, 2008; Tuci et al., 2004).

This paper presents two experiments that aim to
extend the current state of the art to more complex
scenarios. The rationale behind the decision to in-
vestigate more complex scenario is twofold. On one
side we wanted to verify whether the adaptive tech-
niques used in previous related works scale to more
challenging problems. On the other side we wanted
to ascertain whether more complex problems would
lead to solutions that are qualitatively similar to
those observed in previous research or not. The first
experiment consists of a simulated anthropomorphic
robotic arm with coarse grained tactile sensors that
is asked to discriminate between spherical and ellip-
soid objects. The high number of Degrees of Freedom
(DoFs), the necessity to master the effects of grav-
ity, inertia, and collisions, and the high similarity
between the two objects make this problem rather
challenging. The second experiment consists in an
active vision system that has to correctly recognise
five different letters of different sizes. In this case the
difficulty lies in the number of categories (almost all
previous works use only two classes) and in the vari-
ability within elements of the same category. Despite
the two setups are quite different, we show that the
principles that underlie the behaviour of successful
agents in the two cases are the same. In particular,
successful agents are able to obtain close to optimal
performance by (a) actively selecting sensory stimuli
so to reduce perceptual ambiguities as much as pos-
sible, and (b) integrating perceived sensory-motor
states over time.

2 Experiment 1

2.1 Methods

The first experimental setup consists of a simulated
anthropomorphic robotic arm and hand with tactile
sensors which is asked to discriminate between spher-

(a) (b)

(c) (d)

Figure 1: The simulated robotic arm (a) in position A,

and (b) in position B. The kinematic chain (c) of the
arm, and (d) of the hand. In (c) and (d), cylinders rep-

resent rotational DoFs; the axes of cylinders indicate the

corresponding axis of rotation; the links among cylinders
represents the rigid connections that make up the arm

structure. Ti with i = 1, ..., 10 are the tactile sensors.

ical and ellipsoid objects (see Fig. 1a and 1b). The
experiment presented here is an extension of the work
described in Tuci et al. (2009): please refer to that
paper for additional information.

The robot and the robot/environment interactions
are simulated using Newton Game Dynamics (NGD),
a library for accurately simulating rigid body dynam-
ics and collisions (www.newtondynamics.com). The
arm has 7 actuated DoFs while the hand has 20 ac-
tuated DoFs. Fig. 1c shows the kinematic chain for
the arm, the forearm and the wrist, with labels from
J1 to J7 indicating rotational joints with the rota-
tion axis along the axis of the corresponding cylinder.
The robotic hand is composed of a palm and fourteen
phalangeal segments that make up the digits (two for
the thumb and three for each of the other four fin-
gers) connected through 15 joints with 20 DoFs (see
Fig. 1d). (See Massera et al., 2007, for a detailed
description of the structural properties of the arm).
Tactile sensors (indicated by the labels T1 to T10 in
Fig. 1d) return 1 if the corresponding part of the
hand is in contact with any other body (e.g., the ta-
ble, the sphere, the ellipsoid, or other parts of the
arm), 0 otherwise.

The agent controller consists of a continuous time
recurrent neural network (CTRNN, see Beer and
Gallagher, 1992) with 22 sensory neurons, 8 inter-
nal neurons, 16 motor neurons, and 2 categorization
neurons. The first 7 input neurons are updated on
the basis of the state of the proprioceptive sensors on
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joints J1 to J7 respectively (angles are linearly scaled
on the range [−1, 1]), other 10 input neurons are up-
dated accordingly to the state of tactile sensors T1 to
T10 respectively, and the remaining 5 input neurons
are updated on the basis of the state of the hand pro-
prioceptive sensors on joints J8 to J12 respectively
(angles are linearly scaled in the range [0, 1], with 0
for a fully extended and 1 for a fully flexed finger). In
order to take into account the fact that sensors are
noisy, 5% uniform noise is added to proprioceptive
sensors, while tactile sensors have a 5% probability
of returning the wrong value. For all input neurons
the activation value is computed by multiplying the
corresponding sensory input by a gain factor g.

Internal neurons are fully connected to each other,
and each receives one incoming synapse from each
sensory neuron. Each motor and categorization neu-
ron receives one incoming synapse from each internal
neuron while there are no direct connections between
sensory and motor neurons. The state of both in-
ternal, motor and categorization neurons is updated
using the following equations:

σ(x) =
1

1 + e−x
(1)

τiẏi = −yi +
∑

j∈Ni

ωjiσ(yj + βj) (2)

where yi is the state for neuron i, σ(yj + βj) is the
output of neuron j and Ni is the set of index of neu-
rons with connection to neuron i. All time constants
τi, biases βi, network connection weights ωij , and all
the input gains are genetically specified networks’ pa-
rameters. There is one single bias for all the sensory
neurons.

The activation values of motor neurons determine
the state of the simulated muscles of the arm. Each
joint in the arm is moved by an antagonist pair of
muscles, so two neural outputs are associated with
each joint (in total 14 neurons). For a complete de-
scription of the muscle model used in this work, see
Massera et al. (2007). The joints of the hand are ac-
tuated by a limited number of independent variables
through velocity-proportional controllers: the neural
network has 2 output neurons for hand movements,
one to set all desired thumb angles, the other to set
the desired angles for all other fingers. The DoFs
relative to joints J9 to J12 are not actuated. Finally,
the activation values of the two categorization neu-
rons are used to categorize the shape of the object
(see below).

A generational genetic algorithm is employed to
set the parameters of the networks (see Goldberg,
1989; Nolfi and Floreano, 2000). The initial popula-
tion contains 100 genotypes, represented as vectors
of 420 parameters, each encoded with 16 bits. Gen-
erations following the first one are produced by a
combination of selection with elitism and mutation:

(a) (b)

Figure 2: (a) The sphere and the ellipsoid of the first

experiment viewed from above and (b) from west. The
radius of the sphere is 2.5 cm. The radii of the ellipsoid

are 2.5, 3.0 and 2.5 cm. In (a) the arrows indicate the
intervals within which the initial rotation of the ellipsoid

is set in different trials.

for each new generation, the 20 highest scoring in-
dividuals (“the elite”) from the previous generation
are retained unchanged, while the remainder of the
new population is generated by making 4 mutated
copies of each of the 20 highest scoring individuals
with 1.5% mutation probability per bit.

During evolution, each genotype is translated into
an arm controller and evaluated 8 times in position
A and 8 times in position B (see Fig. 1); for each
position, the arm experiences 4 times the ellipsoid
and 4 times the sphere. Moreover, the rotation of
the ellipsoid with respect to the z-axis is randomly
set in different ranges for each trial (see Fig. 2a).
At the beginning of each trial, the arm is located in
the corresponding initial position (i.e., A or B), and
the state of the neural controller is reset. It is then
left free to interact with the object (e.g. by sliding
the hand above it so to make it slightly roll) for 4
simulated seconds (400 time steps) but the trial is
terminated earlier if the object falls off the table.

In each trial, an agent is rewarded by an evaluation
function that seeks to assess its ability to recognise
and distinguish the ellipsoid from the sphere. Rather
than imposing a representation scheme in which dif-
ferent categories are associated with a priori deter-
mined states of the categorization neurons, we leave
the robot free to determine how to communicate the
result of its decision, while requiring that objects’
categories are well represented in the categorization-
output space. More precisely, at each time step, the
output of the two categorization neurons is a point in
the bi-dimensional Cartesian space C = [0, 1]× [0, 1].
Given a set of such points, one can build the AABB
(Axis-Aligned Bounding Box), which is the minimum
rectangle containing all points in the set such that its
edges are parallel to the coordinate axes. The idea
is that of scoring agents on the basis of the extent to
which the AABBs associated to different categories
are non-overlapping. During each trial, we collect the
categorization output produced by the agent during
the last 20 steps. We consider the sphere category
(referred to as CS) as the minimum bounding box
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Figure 3: (a) The Geometric Separability Index (GSI).

(b) Number of tactile ambiguities.

of all the categorization output collected while the
agent was interacting with the sphere, and the ellip-
soid category (referred to as CE) as the minimum
bounding box of all the categorization output col-
lected while the agent was interacting with the ellip-
soid.

The final fitness FF attributed to an agent is
the sum of two fitness components: F1 rewards the
robots for touching the objects, and corresponds to
the average distance over a set of 16 trials between
the hand and the experienced object; F2 rewards the
robots for developing an unambiguous category rep-
resentation scheme on the basis of the position in a
two-dimensional space of CS and CE . F1 and F2 are
computed as follows:

F1 =
1

16

16
∑

k=1

(

1 −
dk

dmax

)

(3)

F2 =

{

0 if F1 #= 1

1 − area(CS∩CE
)

min{area(CS),area(CE)} if F1 = 1
(4)

with dk the euclidean distance between the object
and the centre of the palm at the end of the trial k
and dmax the maximum distance between the palm
and the object when located on the table. F2 = 1 if
CS and CE do not overlap (i.e., if CS ∩ CE = ∅).

2.2 Results

Eight evolutionary simulations, each using a dif-
ferent random initialisation, were run for 500 gen-
erations. Results of post-evaluation tests illus-
trated in (Tuci et al., 2009) shows that the best

evolved agent (hereafter, A1) possesses a close to
optimal ability to discriminate the shape of the
objects as well as an excellent ability to gener-
alize their skill in new circumstances. Moreover,
in (Tuci et al., 2009) it is shown that A1, for
one of the two positions experienced during evo-
lution (i.e., position A, angle of joints J1, ..., J7

are {−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦}), ex-
ploits only tactile sensation to categorise the objects.
In this Section, we take advantage of this latest result
by running tests that further explore the dynamics of
the decision of A1 in position A, beyond the qualita-
tive description illustrated in (Tuci et al., 2009). In
particular, our interest is in finding out whether the
discrimination process occur at a specific moment, as
a response to a sensory pattern that encode the regu-
larities which are necessary for discriminating, or if it
occurs over time by integrating the information con-
tained in several successive sensory states. Movies
of the best evolved strategies can be found at http:
//laral.istc.cnr.it/esm/active_perception.

To answer this question we use a slightly mod-
ified version of the Geometric Separability Index
(hereafter, referred to as GSI) originally proposed
in (Thornton, 1997). GSI represents an estimate
of the degree to which tactile sensor readings ex-
perienced during the interactions with the sphere or
with the ellipsoid are separated in sensory space. We
built four hundred data sets, one for each time step
with the ellipsoid (i.e., {ĨE

k (t)}180
k=1), and four hun-

dred data sets, one for each time step with the sphere
(i.e., {ĨS

k (t)}180
k=1). Where, ĨE

k (t) is the tactile sensor
readings experienced by A1 while interacting with
the ellipsoid at time step t of trial k; and ĨS

k (t) is
the tactile sensor readings experienced by A1 while
interacting with the sphere at time step t of trial k.
Trial after trial, the initial rotation of the ellipsoid
around the z-axis changes of 1◦, from 0◦ in the first
trial to 179◦ in the last trial. Each trial is differently
seeded to guaranteed random variations in the noise
added to sensors readings. At each time step t, the
GSI is computed as follows:

GSI(t) =
1

180

180
∑

k=1

zk(t)

zk(t) =











1 if mEE
k (t) < mES

k (t)

0 if mEE
k (t) > mES

k (t)
uk(t)

uk(t)+vk(t) otherwise

mEE
k (t) = min

∀j &=k
(H(ĨE

k (t), ĨE
j (t)))

mES
k (t) =min

∀j
(H(ĨE

k (t), ĨS
j (t)))

uk(t) =|{ĨE
j (t) : H(ĨE

k (t), ĨE
j (t)) = mEE

k (t)}∀j &=k|

vk(t) =|{ĨS
j (t) : H(ĨE

k (t), ĨS
j (t)) = mES

k (t)}∀j |
(5)
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where H(x, y) is the Hamming distance between tac-
tile sensor readings. |x| means the cardinality of the
set x. GSI=1 means that at time step t the closest
neighbourhood of each ĨE

k (t) is one or more ĨE
k (t).

GSI=0 means that at time step t the closest neigh-
bourhood of each ĨE

k (t) is one or more ĨS
k (t).

As shown in Fig. 3a, the GSI(t) tends to increase
from about 0.5 at time step 1 to about 0.9 at time
step 200, and to remain around 0.9 until time step
400. This trend suggests that during the first 200
time steps, the agent acts in a way to bring forth
those tactile sensor readings which facilitate the ob-
ject identification and classification task. In other
words, the behaviour exhibited by the agent allows
it to experience two classes of sensory states, rather
well separated in the sensory space, which corre-
spond to objects belonging to two different cate-
gories. However, the fact that the GSI does not
reach the value of 1.0 indicates that the two groups
of sensory patterns belonging to the two objects are
not fully separated in the sensory space. In other
words, some of the sensory patterns experienced dur-
ing the interactions with an ellipsoid are very similar
or identical to sensory patterns experienced during
interactions with the sphere and vice versa. This
is confirmed by the graph shown in Fig. 3b, which
refers to the number of tactile ambiguities at each
time step.

A tactile ambiguity is defined as a condition in
which at least some of the patterns are experienced
during interactions with both an ellipsoid and a
sphere. If there are tactile ambiguities, then the
agent cannot determine the category of the object
solely on the basis of the single sensory stimuli. The
fact that the number of tactile ambiguities never
reaches zero while the agent gets an almost optimal
performance implies that the agent’s categorization
strategy involves an ability to integrate sequences of
experienced sensory states over time.

3 Experiment 2

3.1 Methods

The second experimental scenario involves a simu-
lated agent provided with a moving eye located in
front of a screen that is used to display images to be
categorized (one at a time). The eye includes a fovea
constituted by 5 × 5 photoreceptors distributed uni-
formly over a square area located at the centre of the
eye’s ‘retina’, and a periphery constituted by 5 × 5
photoreceptors distributed uniformly over a square
area that covers the entire retina of the eye. Each
photoreceptor detects the average grey level of an
area corresponding to 1× 1 pixel or to 10× 10 pixels
of the image displayed on the screen, for foveal and
peripheral photoreceptors, respectively (see Fig. 4b).
The activation of each photoreceptor ranges between

Figure 4: (a) Letter ‘l’ shown in the 5 different sizes used

in the experiment. (b) The screen displaying the letter ‘l’

in its intermediate size and an exemplification of the field
of view of the foveal and peripheral vision (smaller and

larger squares, respectively). (c) The architecture of the

neural controller. The number inside the each rectangle
indicates the number of neurons, the letter L in a box

indicates that these neurons are leaky integrators. Solid
arrows between two boxes indicate all-to-all connections

between neurons of those boxes, while dashed arrows in-

dicate that the activation of the output units at time t is
copied in the respective input units at time t + 1.

0 and 1 and is given by the average gray level of the
pixels spanned by its receptive field (where 0 and 1
represent a fully white and a fully black visual field,
respectively). The eye can explore the image by mov-
ing along the up-down and left-right axes up to a
maximum distance corresponding to 25 pixels of the
image. The screen, located in front of the agent’s
eye, is used to display five types of italic letters (‘l’,
‘u’, ‘n’, ‘o’, ‘j’), each of which can be of 5 different
sizes (with a variation of ±10% and ±20% with re-
spect to the intermediate size: see Fig. 4a, for the
letter ‘l’). The letters are displayed in black/gray
over a white background. As shown in Fig. 4b, the
eye can perceive only a tiny part of a letter with its
foveal vision and a much larger but still incomplete
part of the letter with its peripheral vision. It is im-
portant to clarify that this set-up is not intended to
model how humans actually recognize letters; rather,
the characteristics of the set-up have been chosen so
to allow us to study how an active vision system can
categorize stimuli through the exploitation of its eye
movements and, possibly, to the integration of the
perceived information over time.

Agents are provided with a neural network con-
troller with 57 sensory neurons, 5 internal neurons,
and 7 output neurons: see Fig. 4c for the network
architecture. Notice that sensory neurons relative
to the eye periphery are connected only to the two
movement output neurons. This connection pattern
represents a very crude abstraction of the functional
organization of the human visual system, in which
eye movements seem to be driven primarily by the
periphery while recognition seems to be based pri-
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marily on the information provided by fovea (Findlay
and Gilchrist, 2003; Wong, 2008). To take into ac-
count the fact that sensors are noisy, a random value
with a uniform distribution in the range [−0.05; 0.05]
is added to the activation state of each photoreceptor
of the fovea in each time step.

The output of each of the 5 leaky internal neurons
depends on the input received from the sensory and
internal neurons through the weighted connections
and by its own activation at the previous time step,
and is calculated as follow:

Ot
i = τiO

t−1
i + (1 − τi)σ(

∑

j∈Ni

Ot−1
j wji + bi) (6)

where Ot
i is the output of unit i at time t, τi is

the time constant of unit i, in [0; 1], wji is the weight
of the connection from unit j to unit i, and bi is
the unit’s bias, and σ(x) is calculated as in equation
1. The output of the output units is calculated as
in equation 6 but the time constant is fixed to 0
(i.e. output neurons do not depend on their previous
state). The output of the motor units is then linearly
normalized in the range [−25; 25] and used to vary
the position of the eye along the x and y axes of the
image, respectively.

Free network parameters are learned using a ge-
netic algorithm similar to the one described for the
previous experiment. Agents are evaluated for 50 tri-
als lasting 100 time steps each. At the beginning of
each trial the screen is set so to display one of the five
different letters in one of the five different sizes (each
letter of each size is presented twice to each individ-
ual), the state of the internal neurons of the agent’s
neural controller is initialized to 0, and the eye is ini-
tialized in a random position within the central third
of the screen (so that the agent can always perceive
some part of the letter, at least with its peripheral
vision). During the 100 time steps of each trial the
agent is left free to visually explore the screen. Tri-
als, however, are terminated earlier if the agent does
not perceive any part of the letter through its pe-
ripheral vision for three consecutive time steps. The
task of the agent consists in labelling the category
of the current letter correctly during the second half
of the trial. More specifically, the agents are eval-
uated on the basis of the following fitness function
FF which comprises two components: the first one
measures the agents’ ability to activate the catego-
rization unit corresponding to the current category
more than the other units; the second one measures
the ability to maximize the activation of the right
unit while minimizing those of the other units:

F1(t, c) = 2−rank(t,c) (7)

F2(t, c) =
1

2
Ot,c

r +
∑

O∈Ot,c
w

1

8
(1 − O) (8)

FF =

50
∑

t=1

100
∑

c=50

(

1

2
F1(t, c) +

1

2
F2(t, c)

)

50 · 50
(9)

where F1(t, c) and F2(t, c) are the values of the
two fitness components at step c of trial t, rank(t, c)
is the ranking of the activation of the categoriza-
tion unit corresponding to the correct letter (from
0, meaning the most activated, to 4, meaning the
least activated), Ot,c

r is the activation of the output
corresponding to the right letter at step c of trial t
and Ot,c

w is the set of activations corresponding to
the wrong letters at step c of trial t. Notice that, as
in the previous setup, individuals are not rewarded
for moving their eyes or for producing a certain type
of exploration behaviour but only for the ability to
categorize (in this case the type of letter).

3.2 Results

Twenty evolutionary simulations were run, each last-
ing 3000 generations. The best agents of all simula-
tions obtained on the average a good performance,
with the best agent of the best replication reach-
ing close to optimal performance. In order to better
quantify the ability of the adapted agents to catego-
rize the letters, we measured the percentage of times
in which, during the second half of each trial, the cat-
egorization unit corresponding to the current letter
is the most activated. We evaluated the best individ-
uals of each of the 20 replications of the experiment
for 10000 trials during which they are exposed to all
possible combinations of the 5 letters with 50 sizes
(uniformly distributed over the range [−20%, +20%]
of the intermediate size), 40 times each for each com-
bination. As a result, we obtained that the average
performance over all replications is 76.92% and the
performance of the best individual of the best repli-
cation is 94.32%. In the remaining part of this sec-
tion, we will focus our analysis on the best evolved
agent, that is the best individual of replication 12.

By analysing the behaviour displayed by the best
individual we can see how, after an initial phase last-
ing typically from 5 to 30 time steps (in which the
behaviour varies significantly for different initial po-
sitions of the eye and for different letter sizes), the
behaviour of the agent converges either on a fixed
point attractor (i.e. the eye stops moving after hav-
ing reached a particular position of the letter) or on a
limit cycle attractor (i.e. the eye keeps moving by pe-
riodically foveating sequentially 2-6 different specific
areas of the image). Interestingly, the agent displays
the same type of behaviour in interaction with let-
ters belonging to the same category even if they are
of different sizes, and different behaviours for letters
of different categories.

As for the previous experimental setup, we wanted
to quantitatively ascertain the capacity of evolved
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individuals to actively select discriminating stimuli.
Apart from the efferent copies that provide as input
the categorization output produced by the agent in
the previous time step, the categorization answer of
our system depends on two sources of information:
the visual information provided by photoreceptors of
the fovea and the motor information provided by the
efferent copies of the motor neurons controlling the
eye movements. Starting from the GSI index intro-
duced in the previous experiment, we adapted it to
the new setup and then we observed the evolution of
the values of this index for both kinds of input (vi-
sual and motor) during the interaction of the agent
with the images.

More precisely, in this case, the index takes into ac-
count all the stimuli experienced in interaction with
an object of a given category. Hence, we devised
what we call the Modified Geometric Separability In-
dex (MGSI), which is defined as the average, over all
patterns, of the proportion of the patterns belonging
to the same category that are in the |Cx| nearest pat-
terns (using the euclidean distance), with |Cx| rep-
resenting the total number of patterns in the same
category as pattern x. More formally, the MGSI is
calculated as follows:

MGSI(P ) =

∑

x∈P

∑

n∈NX

Cx
(n)

|Cx|

|P |
(10)

where |S| indicates the cardinality of the set S,
P is the set comprising all the patterns, Cx is the
set of all patterns belonging to the same category as
pattern x (x doesn’t belong to Cx), Nx is the set of
the |Cx| patterns nearest to pattern x and Cx

(n) is
the indicator function of set Cx: it returns 1 if n is
in the set Cx, 0 otherwise.

We calculated the MGSI of both the visual and
motor-copy patterns experienced by the best evolved
agent during 250 test trials, ten replications (with
different initial positions) for each of the 5 by 5
letter-dimension pairings. More specifically, the two
MGSIs were calculated for each of the 100 cycles
composing trials, so that we could observe their evo-
lution during the agent’s interactions with the im-
ages. The results are shown in Fig. 5. They show
three things. First, the separability of the input pat-
terns in both sensory channels (visual and motor)
significantly increase throughout trials, in particular
during the first 20 cycles, meaning that the agent’s
sensory-motor behaviour has evolved so to facilitate
the categorization process. Second, the geometric
separability of the inputs in the two channels reaches
very similar values (with the motor-copy channel be-
ing slightly better). Third, the geometric separabil-
ity of neither of the two channels reaches very high
values, meaning that, as in the previous experiment,

Figure 5: Evolution of the MGSI of the fovea and efferent

copy of the eye movements inputs during the 100 cycles
of the trials. Each point along the x axis represents the

value of the MGSI calculated by taking all the inputs

recorded in 250 trials (5 letters × 5 dimensions × 10
repetitions) during one of the 100 cycles of each trial.

to successfully solve the task the system has to inte-
grate the information collected during different time
steps, because each sensory pattern collected in a sin-
gular time step does not provide enough information
for correct discrimination.

4 Conclusions

In this paper we presented two different experimental
setups in which embodied agents are asked to catego-
rize various objects by actively selecting their inputs.
In the first scenario an anthropomorphic robotic arm
equipped with coarse grained tactile sensors has been
asked to distinguish between spherical and ellipsoidal
objects. The setup is significantly more complex
than those used in previous related works due to the
high similarity between the objects to be discrimi-
nated, the difficulty of controlling a system with so
many degrees of freedom, and the need to master
the effects produced by gravity, inertia, collisions,
etc. Nevertheless the evolved system is able to solve
the task and reach close to optimal performance.

The second scenario involves an agent with a simu-
lated moving eye that have to recognize different let-
ters. Whereas work in related literature has mainly
focused on experiments comprising only two cate-
gories, this setup is more challenging as there are sig-
nificantly more categories with more variability (five
letters of different dimensions). Also in this case the
system is able to successfully solve the task with a
close to optimal performance.
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Both experiments show that active perception sys-
tems are indeed able to cope with complex scenarios.
The ability to actively select one’s own input is ex-
ploited by agents by selecting stimuli that provide
regularities that can be used to categorize (i.e. stim-
uli that are often, although not necessarily always,
experienced in interaction with objects of the corre-
sponding category). Despite the effectiveness of their
actions, however, agents often encounter input pat-
terns associated with more than one category. Thus,
evolved agents also show a complementary ability to
integrate over time the partially conflicting informa-
tion provided by the experienced stimuli.
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Abstract

We are interested in developing a computa-
tional model of Piaget’s theory of sensorimotor
intelligence. Existing works in this area have
demonstrated mechanisms which acquire Piage-
tian schemas, however the sensory inputs to these
systems are typically constrained to a small num-
ber of discrete values. In order to model Piage-
tian developments such as the acquisition of skills
it will be necessary to handle continuous (or real)
domains of sensor values, and to learn skills which
are guided by feedback from these real valued sen-
sors. We extend existing Piagetian work by em-
ploying a neural network function approximator,
to represent a reinforcement learning value func-
tion over a real valued sensor space. Using this
combination of techniques allows our system to
learn skilled actions which can then be treated
as Piagetian schemas, and combined with other
schemas. Our experiments in a simple simulated
world show that this novel combination is feasible
in principle; future work will need to test the ap-
proach in more challenging domains to determine
its limitations, and to improve on it.

1. Introduction

We are interested in building AI systems which can learn
their own world knowledge autonomously, and exhibit
ongoing development (sometimes called “ongoing emer-
gence” (Prince et al., 2005)). This idea comes from try-
ing to copy the biological approach to the development
of world knowledge, in particular human cognitive de-
velopment during infancy. Piaget’s theory of construc-
tivism gives an account of how humans build up their
world knowledge through their interactions with the en-
vironment (Piaget, 1936). Piaget’s theory is a grand
overview of the human learning mechanism, but unfor-
tunately it does not give the level of detail which would
be necessary to inform a computer implementation. To
make progress in computational models of this theory

a number of AI works have carried out computational
investigations on small parts of the theory (see Section
2). These works have demonstrated the possibility of
a learning mechanism which acquires Piagetian schemas
through trial and error, and can build on this knowledge
through techniques such as chaining schemas.

Building on existing Piagetian AI work, we have set
ourselves a long-term target to build a computational
model of Piagetian means-end behaviours; this is the
fourth of Piaget’s six sensorimotor stages, and com-
mences at about eight months of age. In order to model
this fourth stage our AI system needs to be able to ac-
quire means actions. These are skilled motor actions,
such as grabbing a seen object, or hitting an object to
make it swing, or scratching an object, etc. This gives
us a short term target to be able to build a system which
can acquire these skilled actions and use them within a
Piagetian learning framework. We find that the existing
Piagetian AI work is inadequate for skill acquisition, as
existing work tends to use sensory inputs which are con-
strained to a small number of discrete values. For the
acquisition of skills it will be necessary to handle contin-
uous (or real) valued sensors, and to learn skills which
are guided by feedback from these real valued sensors.
To address this we use the technique of Neural Fitted
Q Iteration (Riedmiller, 2005). This is a reinforcement
learning method, which employs a neural network func-
tion approximator to represent a value function over a
real valued sensor space. This technique makes use of a
set of transition experiences (in our case these are small
arm movements taken at various di↵erent positions), and
generalises to find a value function over the space. A par-
ticular strength of the approach is that the same transi-
tion experiences can potentially be used in training for
di↵erent goals. In order to identify the sensor variables
which are relevant to the acquisition of a particular skill,
we used a simple statistical analysis; this then allows the
neural network to ignore irrelevant sensors, thus there
are fewer inputs to the neural network.

Using this combination of techniques allows our sys-
tem to learn skilled actions which can then be treated as
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Piagetian schemas, and combined with other schemas.
The overarching Piagetian framework we use is the Con-
structivist Learning Architecture (CLA) (Chaput, 2004).
This architecture finds reliable schemas, and also allows
higher layers of learning where composite actions can be
treated as atomic in order to find further schemas.

Our experiments in a simple two-dimensional simu-
lated world show that this novel combination is feasible
in principle. Our system learnt skills to bring the hand
to the mouth and to bring the hand to a seen object.
Composite actions chained these to bring a seen object
to the mouth.

In Section 2 we cover the background work which we
are building on. Section 3 describes our simulated world.
Section 4 details the learning techniques and how we
have applied them. Section 5 gives results of our exper-
imentation. Section 6 concludes with a discussion and
some future directions.

2. Background

This section looks at some of the existing work in the
computational modelling of Piagetian Schemas in the
sensorimotor stage, and then gives the necessary back-
ground on the techniques which we will make use of.

2.1 Piagetian Schemas in AI

There exist a number of AI works which are inspired by
Piagetian schemas. Drescher’s “schema mechanism” was
the first of these (Drescher, 1991). Drescher simulated a
baby, with a hand, eye, and mouth, in a 7x7 grid world.
The world also contained some objects which the baby
could grab. Drescher’s schemas were 3-part structures
consisting of a context, action, and result. A schema is
a prediction about the world: if its action is taken in
the context specified, then the result is predicted. For
example one schema which the program learnt is that if
its current context was “HandInFrontOfMouth”, and it
took the action “HandBackwards”, then it would expect
to obtain the result “HandTouchingMouth”. The learn-
ing mechanism was also capable of chaining together a
number of schemas as a composite action in order to
achieve a goal. Drescher’s mechanism was criticised for
its e�ciency, and improved on by Chaput (2004), as de-
scribed in the next subsection. Nevertheless, Drescher’s
work has been influential, with many subsequent works
following a similar pattern. The learning mechanism
incorporates many of the elements we would want in
a Piagetian framework: schemas are acquired when a
context/action/result triple occurs reliably, schemas are
then stored in a library, and can be activated, and fur-
thermore schemas can be chained up to make compos-
ite actions to achieve goals. The shortcoming for our
purposes is the lack of a method to generalise over real
valued inputs, i.e. if the context consisted of real sensor

values.
In the Petitagé architecture of Stojanov (2001) the

agent learns “expectancies” of the form hSensor state,
action, Sensor statei, which are similar to Drescher’s
context/action/result triple. This was applied to learn-
ing the structure of a maze with walls, and the agent
built a partial map of its world. The architecture is not
specific about the types of sensors required and allows
for the possibility of real-valued sensors, however the is-
sue of generalising over real values of sensors has not
been tackled.

A further work by Perotto and Álvares (2006) has a
tripartite schema structure consisting of: context, action
and expectation (just like Drescher’s). The learner has
the ability to generalise contexts that achieve the same
result. Contexts are represented by binary strings, and
the generalisation converts a ‘1’ and ‘0’ in the same po-
sition in two contexts to produce a ‘#’ value, which is a
wildcard and could match ‘1’ or ‘0’. Although the work
deals with binary strings, these strings could be used to
represent real sensors (i.e. binary representation of the
real number). This type of generalisation could learn
tiled regions where contexts are similar, but would not
be able to find regions of other shapes. We require a
superior generalising ability for our purposes.

A completely di↵erent approach to schema learning
appears in Hart et al. (2008) and is worth mentioning
here. In this work closed-loop feedback control programs
are used for basic sensorimotor actions (such as reach-
ing and touching), and then these appear as discrete ac-
tions within a reinforcement learning framework which
can learn higher level behaviours. This work handles
continuous domains very well and is a feasible approach
to robotic manipulation problems where there are many
degrees of freedom. In such domains it might not be
feasible to have a pure reinforcement learning approach
exploring the whole space, so an a priori model of con-
troller performance may be essential.

2.2 Constructivist Learning Architecture

The first three works above reach some sort of consen-
sus on the idea of schemas being context/action/result
triples. The work of Chaput (2004) goes further by incor-
porating this idea with a neo-piagetian learning theory,
to make a new architecture for developmental learning.
Chaput developed a “Constructivist Learning Architec-
ture” (CLA) which is based on Leslie Cohen’s theory of
infant cognitive development Cohen (1998). This theory
essentially states that infants learn to process informa-
tion at increasingly higher levels of abstraction by form-
ing higher level units out of relationships among lower
level units. There is a bias to process information using
the highest formed units, unless the input becomes too
complex, in which case the infant drops back to a lower
level and attempts to refine its abstraction so as to be
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able to handle the complex information at the higher
level. The CLA is very much a Piagetian learning ar-
chitecture, in which schemas (similar to Drescher’s) are
learnt at each level. The architecture is quite generic;
the higher levels can be formed by integrating multi-
modal information from lower layers, or integrating time
delayed versions of sensory input. As one of his ex-
periments with the architecture, Chaput recreated the
achievements of Drescher, in a more e�cient way.

Chaput’s computational model (CLA) is based on Self
Organising Maps (SOMs) which are built hierarchically
(modelling the di↵erent levels of Cohen’s theory). Cha-
put uses SOMs as way for di↵erent representations to
compete for the finite available space. As in Drescher’s
work, the learning agent records context/action/result
triples. A SOM is created for each possible action of the
agent. The SOM is trained on vectors which represent
the context and result of taking that action a number
of times. The SOM thus finds reliable patterns of con-
text/action/result (i.e. these come out with a strong rep-
resentation in the SOM). Furthermore, the CLA learns
schemas at a certain level first until it has some stable
knowledge, before moving on to consider learning on the
next level. Once the CLA has moved to a higher level,
those schemas from the lower level are not updated any-
more; learning on that level has frozen. Thus the learn-
ing resources can focus on one level at a time.

Chaput’s work did not address generalisation over real
sensor values however. His robot forager example had no
need for this as it only had seven binary sensors. For our
work we will make use of the CLA as it is quite generic,
and generally suits our purpose, however we will combine
it with a generalisation technique to be described next.

2.3 Riedmiller’s Neural Fitted Q Iteration

In order to deal with real valued sensors we borrow
a technique which uses a neural network for function
approximation in reinforcement learning. Riedmiller’s
Neural Fitted Q Iteration (NFQ) (Riedmiller, 2005) is a
method which trains on a set of transition experiences,
each of which has the form hs, a, s0i, state, action, re-
sulting state; these triples are similar to Drescher’s con-
text/action/result. In addition each triple has a reward
value (in practice most of the triples will typically have
zero reward, and just a small proportion have a large
reward). The system learns a Q value which represents
the discounted expected reward to be obtained by ex-
ecuting a specific action in a given context. Thus the
Q value function takes as input a context and action,
and outputs a real value (the Q value). The Q value
function is represented by a neural network. The train-
ing iterates, performing two main steps in each iteration,
the first step is to do a sweep through all the transition
experiences hs, a, s0i, finding a new ideal value for Q, for
the given context s and action a. This uses the following

equation:

Qk+1(s, a) := (1�↵)Qk(s, a)+↵(R(s, a)+� max
b

Qk(s0, b))

where Qk+1(s, a) is the new ideal value for Q, given con-
text s and action a; ↵ is the learning rate; Qk(s, a) is
the old value for Q (from the neural network, before
the update); R(s, a) is the reward which was obtained
for executing action a in context s; � is the discount;
maxb Qk(s0, b) is the Q value of the best action b from
the resulting state s0. The second step is to use these
new ideal values to update the Q value function. This
update is done using the RPROP neural network train-
ing algorithm (Riedmiller and Braun, 1993). After a
number of iterations we have a Q value function which
can recommend to us the best action to take in any given
context, in order to maximise reward. To do this we can
simply query the Q value for every action from the given
context; the highest value is the best action.

The generalisation performed by the neural network
means that the coverage of the sensor space by the tran-
sition experiences can be relatively sparse; when the Q
learning is updating a Q value by looking ahead to the
expected reward to be obtained by taking a particular
transition, this transition does not need to connect di-
rectly to another, as the neural network will have inter-
polated between the data points given. Similarly, the
final Q function can be queried for a context which is
not present in any transition experience. The key inno-
vation of NFQ is the fact that it maintains a record of
all transition experiences, whereas other approaches use
a transition experience to train online and then discard
it. This gives NFQ greater stability, as its early learning
will not be damaged or undone by later learning. A fur-
ther added advantage is that transition experiences are
not tied to a particular reward; transition experiences
merely record how an action moves the agent from one
state to another. This means that the same experiences
could be used in the training for multiple di↵erent goals.

3. The Simulation

Our simulated infant lives in a simple 2D world with
a single rigid square block which can be grabbed and
moved. A rigid body physics engine simulates the
physics of the world, including friction and collisions be-
tween blocks; gravity has been disabled.

The infant (see Figure 1) has a single movable arm,
consisting of two rigid rectangular blocks: an upper arm
and a lower arm. The upper arm can rotate at the shoul-
der, and the lower arm rotates from the elbow. There
is a hand at the end of the lower arm (represented by a
square). When the hand overlaps with a block, a touch-
ing sensation is generated, and if the grab action is then
taken, the block will then move together with the hand,
until released.
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hand mouth fovea 
field of vision 

block 

Figure 1: The simulation.

The infant’s mouth is the square at the centre of the
figure. Note that the mouth position had originally been
at the eye, but this made the learning of hand to mouth
too easy, as it was nearly always optimal to bend the
elbow more, from whatever position, in order to reach
the mouth. The mouth position was moved to the middle
to make the learning problem more interesting.

The infant also has a field of vision, bounded by the
two lines emanating from the left wall. The point of
intersection of the two lines is the “eye”. The field of
vision can be rotated about the eye. As in Drescher’s
simulation, the centre of visual attention has a fovea; in
our system the fovea is capable of moving along a path
between the two eye lines (and equidistant from them).
The fovea is shown as an outlined box in the figure.

The infant has a number of sensors as shown in ta-
ble 1. The last two sensors are part of the seen objects

Type Sensor

float lower arm angle
float upper arm angle
float eye angle
float eye fovea distance
boolean fovea sees
boolean mouth touched
boolean mouth touched object
boolean hand touched
boolean hand holding object
float seen objects distance
float seen objects angle

Table 1: Infant’s sensors

sensor, which returns a set of objects that are in view
(i.e., between the lines bounding the field of vision); each

object in the set is described by a pair: angular displace-
ment from centre of visual field, distance from fovea. The
“distance from fovea” is the object’s distance from the
arc on which the fovea would move if rotated, or alter-
natively, the distance from the fovea if the object were
on the centre line. In the experiments we ran for this
paper there were only two objects to be seen: a block,
or the infant’s own hand, and in fact only the hand was
actually used as an input for learning. Note that there
is no occlusion: objects which are behind others are still
returned in the seen objects list.

Table 2 shows the nine actions which the infant is
capable of. As can be seen from the table, we distin-

Type Action

continuous UPARM UP
continuous UPARM DOWN
continuous LOWERARM UP
continuous LOWERARM DOWN
continuous EYE UP
continuous EYE DOWN
discrete LOOK AT OBJECT
discrete HAND GRAB
discrete FIXATE

Table 2: Infant’s actions

guish continuous and discrete actions. Continuous here
means that the action’s outcome is dependent on con-
tinuous (real valued) sensors, and it a↵ects those sen-
sors; i.e. the action is moving something in a continuous
space. Discrete means that the action’s outcome de-
pends only on Boolean sensors, and it a↵ects only those;
i.e. the action is setting some binary item in the world.
There are four continuous arm actions: the upper arm
and lower arm can both (independently) move up and
down. There are two actions for the eye. The discrete
action LOOK AT OBJECT is really a composite action
which we have coded in innately rather than getting the
system to learn it; this action moves the fovea to focus
on the object, if the object is visible in the field of view
(otherwise the action does nothing). The discrete action
HAND GRAB fixes the position of the object relative
to the hand, if the hand is touching the object (other-
wise the action does nothing). The action FIXATE fixes
the position of the fovea, disabling eye movements for
a time interval (this action is only e↵ective if an object
is in the fovea). Note that these last two discrete ac-
tions have been programmed in as reflexes so that they
are automatically triggered when a sensor is activated:
HAND GRAB happens whenever hand touched is on,
and FIXATE happens whenever fovea sees is on. The
idea of FIXATE is that it forces the infant to spend a
long time with the fovea focussed on the block, during
which time other hand movement actions can be taken;
this allows the program to learn how its arm movements
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can a↵ect the position of the hand, relative to the block
in the centre of vision (and so potentially learn how
to move the hand closer to the fovea and contact the
block). There is no action for the hand to release what
is grabbed; a grabbed object is simply released after a
random time interval.

4. The Learning Mechanism

Our learning mechanism treats discrete actions and con-
tinuous actions di↵erently. Discrete actions are used to
learn context/action/result schemas, just like Chaput’s
(see Section 2). These schemas reflect the most reliable
context and result of the action when it was taken many
times. On the other hand, when continuous actions are
taken, we record transition experiences (following Ried-
miller); although these are similar to the what many
related works call schemas, we will reserve the term
“schema” for higher level knowledge, generalised from
many transition experiences. Thus from a set of tran-
sition experiences, we learn a Q value function, which
means we have a policy for achieving a goal. We then
treat this policy as a schema, and it becomes a new (com-
posite) discrete action which can be taken, and context
and result recorded for higher level learning.

Note that by making this distinction, and using di↵er-
ent learning methods for discrete and continuous actions,
we are e↵ectively giving the infant some innate knowl-
edge: i.e. the infant innately knows that the continuous
actions’ e↵ects depend on the real valued sensors (but it
does not know which sensors exactly).

4.1 Learning For Discrete Actions

Following Chaput (2004) we record vectors of the values
of all sensors before (context) and after (result) each
action is taken. For the discrete actions we discard all
the real-valued sensors. This gives us a vector of ten
binary digits for each time an action has been taken (the
five discrete sensors before and after, corresponding to
context and result). We now change the five result values
to represent the change that happened as a result of the
action. This is computed by subtracting the context
values from the result values. Therefore, if a discrete
sensor changed from 1 to 0 then it will have a change of
-1 whereas if it changed from 0 to 1 the change will be 1,
otherwise it will be 0. An illustrative example follows:

Initial context/result vector: [1 0 0 1 0 / 0 1 0 1 0]
After change is computed: [1 0 0 1 0 / -1 1 0 0 0]
For each discrete action we create a 10x10 Self Or-

ganising Map (SOM) and train it with all the vectors for
that action (we had approximately 1000 vectors recorded
for each action). We then perform thresholding on the
weights of the resulting SOMs. The threshold used was
0.9. This means that, for context values, any weight
greater than 0.9 becomes 1, any weight less than 0.1

becomes �1, and any value in between becomes 0; for
result values, any weight greater than 0.9 becomes 1,
any weight less than �0.9 becomes �1, and any value in
between becomes 0. After this any weight vector which
has at least one positive result becomes a schema (un-
less it already exists as a schema). The SOM method
is averaging, so vectors which consistently have ones (or
zeros) in certain positions in the context and result will
be harvested; wherever there is a mix of ones and zeros in
a position, an intermediate value will result, which will
not make it above the threshold. It is important that
this applies to both context and result, because a result
which occurs regularly would be useless without a con-
text which says when it reliably occurs. This process is
known as harvesting schemas, and follows Chaput (2004)
exactly. A schema states that if its context is matched,
and the action is taken, then the result can be expected
to be achieved. Note that values of 0 in the context
mean “don’t care” whereas 1 means “must be 1” and
�1 means “must be 0”.

In our experiments this procedure proved to be good
at identifying results that could be reliably achieved, but
it found contexts which were overly specific. For ex-
ample, the following are the schemas resulting from the
HAND GRAB action.

-1 -1 -1 0 -1 0 0 0 0 1 218
-1 -1 -1 1 -1 0 0 0 0 1 214
-1 0 -1 0 -1 0 0 0 0 1 296
-1 1 -1 1 -1 0 0 0 0 1 77
-1 0 -1 1 -1 0 0 0 0 1 291
0 0 -1 1 -1 0 0 0 0 1 454
0 1 -1 1 -1 0 0 0 0 1 117
1 1 -1 1 -1 0 0 0 0 1 40
1 0 -1 1 -1 0 0 0 0 1 163
1 0 -1 0 -1 0 0 0 0 1 173
1 -1 -1 1 -1 0 0 0 0 1 123

Each row is a schema with five context elements and five
result elements. The final column gives the number of
recorded vectors which support this schema. The SOM
method of harvesting does not attempt to generalise over
contexts; each instance that has a su�ciently large num-
ber of supporting vectors will get its own representation
in the SOM. We also tried constraining the number of
schemas produced by using a smaller SOM; we found a
cut-o↵ below which the SOM produced no schema, and
above which it produced too many. Ideally we would like
to get one schema for the above examples. To resolve
this we used the 10x10 SOM and added a generalising
step which simply groups together all schemas with the
same result, and replaces any context items which take
multiple values with a zero. This leads to the context [0
0 -1 0 -1] in the above example.

4.2 Learning For Continuous Actions

We tried to use the same harvesting approach with our
continuous actions. We explain the idea behind this with
an example: one might imagine that when the mouth is
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touched, the arm sensors will tend to have a constrained
range of values, and that this might be represented by a
cell in the SOM. However, we found that when real val-
ues are in the context, the discrete result elements (such
as mouth touched) take on intermediate weight values in
the SOM, which do not make it past the thresholding
phase. Eventually we abandoned the SOM approach for
continuous actions, and used a simple statistical method.
Essentially we want to find which sensors are relevant to
achieving a particular result. For example, if we want
to learn to touch the mouth from any position, then we
should only train our neural network with the two arm
angles (and ignore all other sensors).

We will now describe the statistical method for one
action (the same procedure is repeated for all actions).
We record approximately 1000 vectors for each continu-
ous action. The context of our vectors includes all eleven
sensors (discrete and continuous). The result part of the
vector computes the change in discrete sensors, as done
in the discrete action case, and contains five elements.
We want to find which sensors are likely to be important
in the achievement of each result. We perform the analy-
sis for each of the five results separately. For each result
we split our 1000 vectors into two sets. The first set
contains the context vectors when that result was zero,
and the second set contains the context vectors when
the result was (positive) one. To make this concrete
consider the result “mouth touched” and one of the arm
movement actions; we create a set of all context vectors
where the action led to the mouth being touched (this set
turned out to have 54 vectors in our example), and an-
other (larger) set of all context vectors where the action
did not lead to the mouth being touched (this set turned
out to have 992 vectors in our example). For each of the
eleven sensors we now compute an ANOVA, comparing
the distribution of values for that sensor both when the
action achieves the result, and when it does not. For our
example with the result “mouth touched”, we had the
following probabilities of the “null hypothesis” for the
eleven sensors:

6.7⇥10�7, 0, 0.37, 0.51, 0.90, 0.40, 1.0, 1.0, 1.0, 0.50, 0.56
This very clearly shows that the first two sensors (cor-

responding to arm angles) are the only ones relevant to
the result “mouth touched”.

In general we follow this same process for all results.
We discard any result elements where the number vectors
in the smallest of the two sets (for zero or one) is less
than two percent of the size of the original data. This
corresponds to a result which is very rarely achieved by
this action. After this we are left with results which are
frequently achieved by the action, and we need to find
which sensors are relevant to achieving the result. We
set a threshold of two percent on the probability of the
“null hypothesis”; i.e. we only pick up on sensors whose
probability of being a↵ected by the result (of 1 or 0) is

less than 0.02. This gives us a list of relevant sensors for
each result which can be achieved by this action. This
is repeated for all actions.

Now for each result we have a list of all those sensors
a↵ecting the result (if any), and the action that caused it.
Any result that has a non-empty list of actions and sen-
sors is used to create a new neural network, to represent
a Q value function for achieving that result. The inputs
to the network are the sensors and the actions. Con-
tinuous sensors give real valued inputs to the network,
discrete sensors as well as actions give binary inputs to
the network. This network is now trained by the NFQ
algorithm, using all the transition experiences as train-
ing. Any transition experiences that achieve the result
are given a maximal reward value; all other transition
experiences have zero reward.

4.3 Learning For Composite Actions

After having learnt schemas for discrete actions, and
policies for continuous actions, we form composite ac-
tions for any new result. This follows Drescher (1991)
(and Chaput). Composite actions are formed by finding
a chain of actions backwards from a result, which lead to
the result being achieved, from a variety of di↵erent con-
texts. Thus the composite action has a set of contexts
where it can be invoked, and a single result which it will
achieve. The policies learnt above for continuous actions
are also treated as composite actions in their own right.

For the next phase of learning we drop the six con-
tinuous actions of Table 2 above, and extend the set of
actions with the new composite actions. This next phase
of learning progresses using the method of harvesting of
schemas which was used for the discrete actions. This
can find correlations among the composite actions. In
particular it can find new results which may be reliably
achieved by the policies for continuous actions, because
these composite actions are now taken frequently, and in
sequences. These new results would be very unlikely to
be achieved before the policies were learnt, because there
was little chance that one result would be achieved after
another by the random operation of individual continu-
ous actions.

This completes our higher level of learning. As with
Chaput’s work, in principle there is no reason why we
cannot have progressively higher layers on top of this,
but we have not explored this yet.

5. Results

To gather training data we ran our simulation to gather
7000 transition experiences, where actions were ran-
domly taken. We randomly repositioned the hand after
each movement. This is simply for expedience in gath-
ering training data; it covers most of the space in less
time. A random walk would be more faithful to a real
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infant’s experience, but it needs to run for longer in or-
der to cover most regions of the space. From this data
we harvested schemas for discrete actions, resulting in
two schemas:

-1 0 -1 -1 -1 1 0 0 0 0
0 0 -1 0 -1 0 0 0 0 1

The first is for the LOOK AT OBJECT action and
states that this action results in the fovea sees sensor
turning on. The second is for the HAND GRAB action
and states that it results in the hand holding object sen-
sor turning on.

For the continuous actions we found actions to achieve
three results. Firstly the result of mouth touched was
found to be caused by the four arm movement actions,
with the sensors lower arm angle and upper arm angle
being relevant. From this a Neural network with six
inputs was created (i.e. four actions and two sen-
sors) to represent the Q value function and learn a pol-
icy to achieve mouth touched. Secondly the result of
hand touched was found to be caused by the four arm
movement actions, with the sensors seen objects distance
and seen objects angle and mouth touched being rele-
vant. The mouth touched sensor is spurious here; it
should not be relevant to achieving the goal, however
it is probable that the fact that the object is often lo-
cated close to the mouth causes the relationship to be
inferred. From this a neural network was created to rep-
resent the Q value function and learn a policy to achieve
hand touched. Finally, the result of fovea sees was found
to be caused by the two eye movement actions, with the
sensors eye angle and upper arm angle being relevant.
The upper arm angle sensor is spurious here. We did
not train a network for this as it was deemed to be too
simplistic, given the limited space in which the eye can
rotate.

We trained the networks for the first two results using
1016 transition experiences (the same experiences were
used in training for the two di↵erent results). This is
much less data than had been used for the initial analy-
sis; this reduction was simply to make the learning iter-
ations faster; the data proved to be su�cient. We used
100 RPROP iterations for each training phase, followed
by a Q-learning sweep, and this whole process was iter-
ated approximately fifteen times to produce a reasonable
result. A reasonably e↵ective policy was learnt both for
achieving mouth touched and hand touched. The poli-
cies were successful in achieving their result about 50%
of the time, sometimes getting stuck in a back and for-
ward loop. We suspect that if there were more than
four possible actions it would likely lead to smoother
and more reliable policies (although more training data
and time would be required).

Given the simplicity of our scenario we were able to
compile the composite actions manually. This gave us
actions that could achieve fovea sees by looking at an

object, and which could achieve hand holding object by
moving the hand (using the policy learnt above) to the
block in the fovea, and performing HAND GRAB. The
final harvesting of schemas using these composite ac-
tions was able to find the schema to achieve the result
mouth touched object (i.e. to grab an object and take
it to the mouth). Admittedly this result is a little con-
trived as the simulation has been designed just to make
this possible, however it does show that the techniques
combined here can work in principle.

6. Conclusion

This work has brought together two techniques in an ef-
fort to model sensorimotor skill acquisition, with a view
to modelling Piagetian sensorimotor developments. We
will first briefly evaluate the e↵ectiveness of these two
techniques, and then the combination. Firstly, Ried-
miller’s NFQ works very well in our setting. It is partic-
ularly convenient that the same training experiences can
be used to train for di↵erent goals. We can also illus-
trate its strength by comparing it with a naive reinforce-
ment learning approach to our simulation; for example
in learning to move the hand to touch an object in the
fovea, a naive approach would require touching the ob-
ject on each trial to propagate reward back to the actions
that led there. Furthermore, the object would need to be
in the fovea all the time. In contrast the NFQ approach
can use any transition experience of a hand movement
as part of its training data; the experiences merely de-
scribe the resulting state, and are separated from any
particular goal. There are issues over biological plausi-
bility however as this is hardly a realistic model of what
an infant does; instead it is likely that memories are
abstracted/generalised in some way rather than being
stored precisely.

Secondly, Chaput’s method for harvesting schemas
works reasonably well, apart from the issue of generalis-
ing over contexts, mentioned in Section 4 above. Despite
the success of this method, we suspect that a simpler sta-
tistical averaging technique may obtain the same results
in a more e�cient way. The clustering ability of the
SOM has not been exploited by Chaput, and we suspect
that the basic idea of a hierarchy of SOMS could lead
to a much more powerful learning approach if used in a
di↵erent way. This is an interesting area for future work.

The combination of techniques we have used works for
our simple examples but needs to be tested on a wider
range of example scenarios. There will be challenges to
be overcome when the space is larger, for example if sen-
sors include more inputs from vision. The training data
required will become inordinately large, and it is likely
that there will need to be some gradual way to build up
abstractions on sensor data, so that the learning is con-
strained initially, either by using some innate abstrac-
tions, or the lifting of constraints (Lee et al., 2007). Fur-
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thermore, the e�ciency of the learner could be improved
considerably, in a number of ways. One obvious example
is by using online learning, where actions are taken us-
ing a greedy strategy, which would mean that less of the
state space would need to be recorded. This ine�ciency
does not concern us for the moment because we are cur-
rently unsure how a (relatively generic) learning system
could be built to learn high level knowledge from its ex-
periences. Once this question has been answered (even
with an ine�cient mechanism) we can then investigate
optimisations.

Finally, let us look at this as a model of Piaget’s the-
ory (which is our long-term goal), the work has achieved
what it set out to do, in allowing continuous actions to be
integrated with a schema learning mechanism, however,
many aspects remain to be addressed to create a con-
vincing model of Piagetian learning. To compare with
Chaput’s (2004) work, we note that we have not imple-
mented synthetic items. Synthetic items seem particu-
larly useful when there are hidden aspects of the world,
for example: (1) objects which have an existence in the
world, but are not always observable (Drescher’s original
motivation for introducing the synthetic item); (2) po-
sitions which are not accurately observable, as in Cha-
put’s robot forager world; (3) hidden properties such as
the weight of an object (Morrison et al., 2001). These
“hidden aspects” do not feature in our simulation for
the moment, but we expect that they will play a part in
future work when we want to model later stages of devel-
opment. Nevertheless, we can claim a strong similarity
with these works because of the hierarchical nature of the
learning; the synthetic item is used to notice a correla-
tion between the activation and success of schemas over
time, which is also a function performed by our higher
layer of learning.

The next immediate step for this work would be to
allow the policies learnt on continuous actions to be ad-
justed to achieve new goals. We have frozen the policies
once they are learnt, but to model Piagetian assimilation
and accommodation in stage 4 means-end behaviours,
there should be the possibility to adjust a policy when a
new, slightly di↵erent, goal needs to be achieved.
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Abstract

We extend the auto-mirroring guidance
model, which explains the process of sharing
vowels between a caregiver and an infant, by
introducing two transitional elements related
to the infant’s articulatory development: One
is the accuracy of the infant’s articulation im-
proving along with the separation of his/her
vowel prototypes. The other is the transition
of the caregiver’s auditory perception of map-
ping the infant’s vowels onto her own ones.
The extended model can simulate several ad-
ditional aspects of vowel development, e.g.,
the rapid separation of infant vowels and their
convergence and the transient rise of stretch-
ing motherese. Simulation results suggest a
new picture of the process of vowel develop-
ment, which explains how there are two tran-
sitional aspects of vowel separation and guid-
ance, and they also suggest hypotheses on the
causes of vowel separation and a caregiver’s
motherese.

1. Introduction
The process of sharing vowels with caregivers seems
to be the flrst developmental step of an infant’s lan-
guage development. Kuhl and her colleagues pointed
out the importance of regarding the process of vowel
development as dynamic interaction between percep-
tual development, articulatory development, and a
caregiver’s address to the infant(Kuhl et al., 2008).
However, their model is still too conceptual to un-
derstand the computational mechanism underlying
such processes of development. To reveal such a
mechanism, the use of synthetic studies has been
considered one of the most promising approaches
(Asada et al., 2009).

Some of these studies have focused on the percep-
tual development needed to learn a caregiver’s vowel
categories from her speech (McMurray et al., 2009,
Vallabha et al., 2007). However, how the caregiver
addresses her infant in speech should be taken into
account to understand such perceptual development.

This addressing by the caretaker seems to depend
on her observations and understanding of the in-
fant’s developmental stage, based on such input as
the quality of vocalizations (Gros-Louis et al., 2006,
Bloom and Lo, 1990).

Mutual imitation (Masur and Olson, 2008,
Kokkinaki and Kugiumutzakis, 2000) is a typical
and highly signiflcant instance of caregiver-infant
interaction. de Boer (de Boer, 2000) and Oudeyer
(Oudeyer, 2005) have suggested that imitative
interaction plays important roles in sharing vowels
between agents. In particular, Oudeyer showed
computationally that shared prototypes can be self-
organized by virtue of a perceptual bias around vowel
prototypes (perceptual magnet efiect (Kuhl, 1991)).
However, this research lacks consideration of an
inevitable hurdle to infant development, namely
the physical difierences between the caregiver and
infant: They cannot produce the same vowel sounds
since their articulatory organs are very difierent
from each other (Vorperian and Kent, 2007).

Miura et al. showed that a robot could acquire
shared vowels with a human interactant who im-
itates its vocalization with a difierent articulatory
organ from it (Miura et al., 2007). To investigate
what properties of a caregiver’s imitation permit the
sharing of vowels, Ishihara et al. have constructed
a computational model of the caregiver-infant imi-
tative interaction (Ishihara et al., 2008). They pro-
posed that an infant’s prototypes are guided to-
ward the anticipated ones by distinctive biases in
the caregiver’s imitation, made as if she were imi-
tating not only the infant’s utterance but also both
her own usual utterance style (sensorimotor magnet
bias) and her own previous utterance (auto-mirroring
bias). Also, they considered the difierences in utter-
able vowels. However, there remain other aspects of
infant articulatory development such as proflciency
of articulation control through self-monitoring ex-
perience of produced sound (Oller and Eilers, 1988)
and expansion of one’s utterable vowel area in vowel
space (Ishizuka et al., 2007, Rvachew et al., 2006).
Such immature articulation activities should be
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introduced in their model, given the likeli-
hood that the developmental conditions of per-
ception and articulation could afiect each other
(Vihman and Nakai, 2003, van Beinum et al., 2001,
Oller and Eilers, 1988).

Introducing the elements of an infant’s articu-
latory development in the auto-mirroring guidance
model would allow us to examine the causes and ef-
fects of several phenomena appearing in a real in-
fant’s vowel development, such as 1) rapid separation
of distribution clusters of infant utterances and its
subsequent convergence (Ishizuka et al., 2007) and
2) stretching motherese in which the distributional
proflle of the mother’s vowels addressed to her infant
tends to stretch compared to that used in addressing
other adults (Kuhl et al., 1997).

In this paper, we extend the auto-mirroring guid-
ance model by introducing two transitional ele-
ments related to an infant’s articulatory develop-
ment. First, the accuracy of an infant’s articula-
tion is assumed to improve along with the separa-
tion of the infant’s own prototypes, since sensorimo-
tor learning of these prototypes would be easier af-
ter they are separated more widely. Then, the care-
giver’s auditory perception that maps the infant’s
vowels on the caregiver’s own vowels is also mod-
ulated according to the infant’s articulatory devel-
opment. We report that the extended model can
simulate the rapid separation of an infant’s vowels
and their convergence as well as the transient rise
of stretching motherese. Furthermore, we suggest
a new picture of the process of vowel development
that explains that there are two transitional aspects,
i.e., separation and the guidance, and we suggest hy-
potheses on the causes of infant vowel separation and
the caregiver’s use of motherese.

2. Auto-mirroring guidance model

2.1 Overview
This model consists of imitation mechanisms for both
a caregiver and an infant and a learning mecha-
nism of a sensorimotor map for the infant. Imitation
mechanisms convert the other’s vowel sound into the
imitator’s own articulation command to produce the
imitation vowel sound.

Another feature of this mechanism is to contain
possible biasing elements, i.e., sensorimotor mag-
nets and auto-mirroring bias, in the caregiver’s
imitation arising from her anticipation of her in-
fant’s utterance. Sensorimotor magnets are kinds
of convergence bias of perception and articulation
around the caregiver’s vowel prototypes. Part of this
characteristic seems to originate from Kuhl’s percep-
tual magnet efiect (Kuhl, 1991), which is a percep-
tual warp around a listener’s phoneme prototypes.
This bias can be seen as an efiect of the caregiver’s
unconscious anticipation of her infant to articulate

vowel prototypes in a mother language. Another
bias, auto-mirroring bias, is a kind of mixing bias
of the other and the self, in which the perception of
the other’s vowel is attracted toward the perceiver’s
own last utterance. This bias can be seen as an ef-
fect of the caregiver’s anticipation that her infant will
imitate her utterance correctly.

Figure 1 shows an overview of the model. At the
t-th step of interaction, the infant utters a vowel
s′(t) ∈ "Ns by the articulation command a′(t) ∈
"Na , and the caregiver listens to vowel sound s′(t)
and utters s(t) ∈ "Ns by the articulation a(t) ∈ "Na

as an imitation of s′(t). Next, the infant listens to
s(t) and updates his/her sensorimotor map based on
both his/her articulation a′(t) and the caregiver’s
reply s(t) and then tries to imitate s(t) by the artic-
ulation a′(t + 1) using the updated map. The learn-
ing mechanism of the map is explained in section 2.3
below.

Figure 1: Overview of proposed model consisting of two

imitation mechanisms for a caregiver and an infant.

2.2 Imitation mechanism
The caregiver’s imitation a(t) is modeled by the for-
mula: a(t) = f(sb(t);pi,λ), (1)

sb(t) = (1 − η)s′(t) + ηsa(t), (2)

sa(t) = f∗(a(t − 1);p∗
i ), (3)

where f : "Ns → "Na is her sensorimotor map at the
t-th step based on her prototypes pi ∈ "Na , while
f∗ : "Na → "Ns is its quasi-inverse map at the t-th
step based on the infant’s anticipated prototypes
p∗

i ∈ "Ns . This term is used because p∗
i represents

the infant’s producible vowels that can be mapped
onto the caregiver’s prototypes, i.e., the caregiver an-
ticipates her infant matching her own prototypes p′

i

with p∗
i .

The caregiver’s articulation a(t−1) is input to her
quasi-inverse sensorimotor map f∗ and converted to
the anticipation sa(t) of her infant’s imitation of the
articulation a(t−1). The anticipation is mixed with
real infant utterance s′(t) with the mixing rate

η(0 ≤ η ≤ 1), and this attraction is called the auto-
mirroring bias. Then the attracted perception sb(t)
is converted to the articulation command a(t) by the
sensorimotor map f , where its output is attracted
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to prototypes pi(i = 1, · · · , M) with the converging
degree λ(0 ≤ λ ≤ 1). This convergence is called
the sensorimotor magnets. Thus, we can control the
strength of the caregiver’s biases, that is, the sensori-
motor magnets and auto-mirroring bias, by changing
the parameters λ and η.

2.2.1 Sensorimotor map
We model the sensorimotor map f with one of
the linear regression mixture models, a Normalized
Gaussian Network (NGnet) (Sato and Ishii, 2000,
Moody and Darken, 1989). An NGnet has M Gaus-
sian functions gi(i = 1, · · · ,M) as basis functions
in input space and maps the input data with mixed
linear regression functions. Each mixture rate is de-
cided according to the distance between the input
and the center of each Gaussian, each of which has
charge of one linear regression function. NGnet de-
termines the caregiver’s articulation a(t) by

a(t) = f(sb(t);pi, λ) (4)

=
M
∑

i=1

gi(sb(t); µi,Σi)
∑M

j=1
gj(sb(t); µj ,Σj)

Wi(pi, λ, µi)sb(t),

(5)

where µi ∈ "Ns and Σi ∈ "Ns×Ns are the center
vector and the variance-covariance matrix of the i-th
Gaussian. λ is a parameter that sets the eigenvalue
of the representation matrix of linear transformation
Wi(pi,λ, µi) ∈ "Na×(Ns+1) to (1−λ). Furthermore,
sb(t) ≡ [sT

b (t), 1]T ∈ "Ns+1 is the argumented ma-
trix of sb(t).

Figure 2 shows how sensorimotor magnets are
modeled and controlled by the setting of λ when
we assume that the NGnet has one Gaussian unit
(M = 1), where the one-dimensional inputs (infant’s
vowel sounds) are normally distributed around its
center. Each input is mapped by a matrix of lin-
ear transformation W1, and thus the distribution of
the outputs (caregiver’s articulation commands) are
determined by the eigenvalue (slope here) of the ma-
trix: The smaller the eigenvalue (1−λ) of the trans-
formation matrix W1 is, the more the distribution
gathers around the image of the Gaussian center µ1

under W1, namely W1µ1. Therefore, we regard the
image as a prototype to represent sensorimotor mag-
nets, namely pi ≡ Wiµi. Furthermore, we regard
the center of Gaussian µi as anticipated prototypes
p∗

i , namely p∗
i ≡ µi, since they are mapped onto the

caregiver’s prototypes.
The caregiver’s quasi-inverse sensorimotor map is

also modeled by another NGnet so that it can map
the caregiver’s prototype pi to p∗

i as opposed to the
sensorimotor map that maps p∗

i to pi. This quasi-
inverse map works like a predictor of the infant’s
imitation and is updated at every step as the sen-
sorimotor map changes, as mentioned in section 3.2
below.

Figure 2: Illustration of how an NGnet constructs the

sensorimotor magnets with one transformation matrix

2.3 Learning mechanism for an infant
An infant has the immature sensorimotor map f ′

represented by an NGnet that has M -Gaussian
functions and learns its parameters in the T -th
step of the interaction based on the n-step his-
tory H(T ) of the pairs of the infant’s own ar-
ticulation and the caregiver’s reply. Namely,
H(T ) =

{

a′(t), s(t)|t = T − n + 1, · · · , T
}

.
Here, the infant task is to tune the parameters
{

µ′
i(T ),Σ′

i(T ), W ′
i (T )|i = 1, · · · ,M

}

of her senso-
rimotor map so that it can represent the input-
output relationship from s(t) to a′(t) within H(T ).
We use the EM algorithm (Sato and Ishii, 2000,
Dempster et al., 1977), which is one of the maximum
likelihood estimation methods for mixture models, to
estimate the most appropriate parameters.

As a result of this update, the infant’s prototypes
p′

i ≡ W ′
i µ

′
i are also updated at every step. The flnal

goal of his/her development is to match his/her pro-
totypes p′

i to his/her anticipated prototypes by the
caregiver p∗

i , which he/she can not observe directly.

3. Extensions of the model

3.1 Accuracy of infant’s articulation
To consider the possible efiects of the articulatory
development of an infant on the process of sharing
vowels, we introduce a simplifled model. The ac-
curacy of the infant’s articulation control is consid-
ered to be improved through self-monitoring of the
sound resulting from his/her attempts at articulation
(Oller and Eilers, 1988). Therefore, this accuracy is
modeled so as to be related to the current distri-
bution of the infant’s produced sounds: We assume
that his/her articulation error can be represented by
a variance of a Gaussian distribution around his/her
target articulation a′(t), and this variance is deter-
mined based on the extent to which his/her current
prototypes are separated from each other.

Given the infant’s target articulation a′(t), the
produced articulation is determined by

a′(t) = N (a′(t), σ2(S(t), h)), (6)

σ(S(t), h) =
150

1 + exp{0.02(S(t) − h)} , (7)

S(t) =
M
∑

i=1

( |p′
i(t) −

∑M
j=1

p′
j(t)

M |
M

)

, (8)
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where N (a′, σ2) represents a manipulation to add a
Gaussian noise whose variance is σ2 to the target ar-
ticulation a′. The variance σ2 depends on the degree
of the prototypes’ separation S(t), and their relation-
ship is controlled by the parameter h. Here, we can
control the di– culty of articulation development in
the simulation by changing the parameter h; for ex-
ample, the larger h is, the larger σ2 is, even under
the same condition of S(t).

3.2 Transitions of caregiver’s perception
In the previous model, we assumed that anticipated
prototypes p∗

i are flxed throughout interactions.
However, an experimental result of category identi-
flcation of infants’ vowels by caregivers shows that
an adult’s perception of infant vowels can alter, e.g.,
the geometry of perceived prototypes expands and
shifts in vowel space as the infant becomes older
(Vorperian and Kent, 2007, Ishizuka et al., 2007,
Rvachew et al., 2006, Kuhl and Meltzofi, 1996).
Therefore, anticipated prototypes should be altered
through interactions for a more valid simulation.

We introduce the expansion of the geometry of an-
ticipated prototypes in a flxed expansion rate as a
flrst implementation. Anticipated prototypes are de-
termined by

p∗
i (t) = p∗

i (0) +
t

TL
(p∗

i (TL) − p∗
i (0)), (9)

p∗
i (0) =

M
∑

i=1

(
p∗

i (TL)

M
), (10)

where TL is the number of total interaction steps and
p∗

i (TL) are flxed values in the current model.

4. Simulation of mutual imitation

4.1 Procedure
A caregiver imitates her infant’s utterance at every
step while her infant basically tries to imitate the
caregiver’s utterance at every step but sometimes
utters randomly, i.e., the infant tries to utter one
of the prototypes every step until the n-th step and
continues to do so every flfth step even after the n-
th step interaction. Furthermore, until the n-th step
has passed, the infant does not update his/her senso-
rimotor map, since she can not utilize enough learn-
ing data. In this simulation, we set n = 500 and
TL = 5000.

4.2 General settings
We assume each vowel sound is represented by a
two-dimensional vector, since vowel prototypes are
known to be distinguishable at two frequency peaks,
which are called flrst formant and second formant.
Furthermore, for simplicity of simulation, we assume
that an articulation command can be represented by
the same vector as that of the vowel sound produced
by the articulation, i.e., s(t) = a(t) and s′(t) = a′(t).

Figure 3 shows an overview of the settings of the
caregiver’s prototypes pi (blue dots), the anticipated

prototypes p∗
i (t) (red dots), and the infant’s proto-

types p′
i(t) (black dots) in the vowel/articulation fea-

ture space. Anticipated prototypes are set to be lo-
cated at a distance from the caregiver’s prototypes,
since their articulation organs are difierent and thus
a difierence in their vowels can be expected. We
set the number of prototypes M to 5, imagining a
Japanese caregiver. The infant’s initial prototypes
are set more closely together, since a real infant’s cat-
egories are not so widely separated from each other in
the early period of development. The caregiver’s pro-
totypes are flxed throughout the interactions, while
anticipated prototypes are gradually expanded as the
interaction proceeds based on eq. (9).

Figure 3: Overview of settings of the initial states of in-

fant’s prototypes (black dots) and caregiver’s prototypes

(blue dots) and the anticipated prototypes (red dots).

4.3 Settings of the caregiver
Assuming a Japanese caregiver and infant, we deter-
mined the caregiver’s prototypes pi and anticipated
prototypes at the last step p∗

i (TL) as

{pi} =

{

700
1200

,
400
1700

,
400
1300

,
600
1500

,
500
1000

}

,

(11)

p∗
i (TL) = pi +

400
600

(i = 1, · · · ,M). (12)

We determined the parameters of the caregiver’s sen-
sorimotor map so that all of our assumptions are sat-
isfled as follows:

µi(t) = p∗
i (t) (i = 1, · · · , M), (13)

Σi =
3600 0

0 3600
(i = 1, · · · ,M), (14)

W̃i(pi,λ, µi(t)) =
(

(1 − λ)I, pi − (1 − λ)µi(t)
)

(i = 1, · · · ,M, 0.0 ≤ λ ≤ 1.0). (15)

In addition, we determined the parameters of the
caregiver’s quasi-inverse sensorimotor map so that
all of our assumptions are satisfled as follows:
µ∗

i = pi (i = 1, · · · ,M), (16)

Σ∗
i =

3600 0
0 3600

(i = 1, · · · ,M), (17)

W̃ ∗
i (p∗

i (t), µ
∗
i ) =

(

I, p∗
i (t) − µ∗

i

)

(i = 1, · · · ,M).

(18)
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Note that the infant’s anticipated prototypes p∗
i (t)

change through the interactions according to eq. (9).
From the simulation results of the previous model,

we know that infant prototypes p′
i(t) are gradually

guided toward the anticipated prototypes p∗
i (t) by

virtue of association with the caregiver’s sensorimo-
tor magnets and auto-mirroring bias. The degree
of such guidance depends on the degree of their
strengths, and (η = 0.5, λ = 0.6) is the setting pair
that exerts the guidance efiect most strongly. There-
fore, we selected this setting pair for the current sim-
ulation.

5. Results

We simulated the caregiver-infant imitative interac-
tion under several conditions of di– culty in articula-
tory development: (a)h = 0, (b)h = 150, (c)h = 300,
and (d)h = 450.

5.1 Fading of articulation error
Figure 4 shows the degree of an infant’s articulation
error σ(t) processed throughout interaction steps un-
der each condition of h. We can see that the infant’s
articulation error σ(t) is larger throughout the inter-
actions under the condition where the infant’s artic-
ulation development is more di– cult (h is larger), as
we had expected. In addition, we can see that the er-
ror σ(t) tends to decrease step by step rapidly in the
flrst half of this period, especially under conditions
(a), (b), and (c).

 0 50 100 150 200

 0  1000  2000  3000  4000  5000Deg. o
f articu

lation e
rror σ(

t)

Learning step t

h = 0150300450

Figure 4: Difierences in the transitions of infant articu-

lation error σ(t) under several conditions of di– culty h

in articulation development.

5.2 Transitions of vowel distribution
Figure 5 illustrates the transitions of vowel distribu-
tions of both the caregiver and the infant under each
condition of h. In these flgures, utterances of the in-
fant s′(t) (red dots) and those of the caregiver s(t)
(blue dots) and the infant’s prototypes p′

i(t) (black
dots) are plotted during each of three periods (at the
last step for p′

i(t)): flrst 1000 steps (left box), middle
1000 steps (middle box), and flnal 1000 steps (right
box). The apexes of the red pentagons represent the
infant’s anticipated prototypes p∗

i (t) at the last step
of each period, while those of the blue pentagons
represent the caregiver’s prototypes pi.

Large variations in the distributional patterns of
utterances between conditions indicate that the dif-
flculty of articulatory development heavily afiected
both the infant’s learning and the interactions: The
infant’s utterances and prototypes were distributed
more widely when h was larger and the number of
uttered categories was difierent, i.e., only three vowel
categories were uttered during the flnal period in
condition (a) while flve categories were uttered under
conditions (c) and (d).

(a) h = 0

(b) h = 150

(c) h = 300

(d) h = 450

Figure 5: Transitions of vowel distributions of both the

caregiver (blue dots) and the infant (red dots) and those

of the infant’s prototypes (black dots) under difierent

conditions of h. The geometry of the caregiver’s pro-

totypes (apexes of blue pentagons) and the infant’s an-

ticipated prototypes (apexes of red pentagons) are also

depicted.

69



5.3 Separation of prototypes
Ishizuka and Mugitani investigated the distributions
of real infants’ utterances during the age span of 4-
60 months (Ishizuka et al., 2007). They showed that
the geometry of vowel categories tend to expand until
age 24 months and the speed of their separation is
rapid in the early stage and then becomes slower.

Figure 6 shows the transitions of the separation
degrees S(t) of infant prototypes deflned in eq. (8).
The counterpart for the anticipated prototypes is
also depicted as a reference by the solid line. We
can see that the infant’s prototypes tend to expand
rapidly, particularly in the flrst half of the period,
and then the speed of expansion becomes slower un-
til the prototypes gradually converge. Interestingly,
this basically reproduces the real transition reported
in the previous study (Ishizuka et al., 2007).

 0 100 200 300 400 500

 0  1000  2000  3000  4000  5000Deg. o
f separ

ation S
(t)

Learning step t

h = 0150300450anticipated

Figure 6: Transitions of the separation degree S(t) of

the infant prototypes under difierent conditions of h.

The counterpart of the anticipated prototypes is also de-

picted.

5.4 Process of sharing vowels
Figure 7 shows the transition of the sharing degree
of prototypes between the caregiver and the infant,
which represents the as-a-whole closeness of the an-
ticipated prototypes p∗

i (t) with the infant prototypes
p′

i(t). The sharing degree is evaluated by the for-
mula:

D(t) =
M
∑

i=1

Min({|p∗
i (t) − p′

j(t)|}j=1,··· ,M )

M
, (19)

where D(t) represents the as-a-whole distance of an-
ticipated prototypes from the infant’s prototypes at
the t-th step of the interaction; consequently, the
sharing degree is higher when this index is lower.
The as-a-whole distance D(t) is small in the initial
state under all conditions, and these values are not
so difierent from each other since the infant’s proto-
types are set to gather around the initial point of an-
ticipated prototypes p∗

i (0). The as-a-whole distance
D(t) continued to increase under conditions (a) and
(b) to the end, while it increased rapidly during the
flrst half of the period and then began to decrease
under conditions (c) and (d).

We can also see such transitions in Fig. 5. Under
conditions (a) and (b), infant prototypes did not sep-
arate so widely from each other and therefore they
were guided to a smaller number of anticipated pro-
totypes, indicating that the large as-a-whole distance
remained. On the contrary, under conditions (c)
and (d), the geometry of infant prototypes expanded
more widely than did that of anticipated prototypes
in the flrst half of the period, and then the prototypes
were located near all of the anticipated prototypes,
indicating an inverted U-shape transition of the as-
a-whole distance.

 0 50 100 150 200 250 300

 0  1000  2000  3000  4000  5000As-a-w
hole di

stance 
D(t)

Learning step t

h = 0150300450

Figure 7: Transitions of the as-a-whole distance D(t) of

anticipated prototypes from infant prototypes under dif-

ferent conditions of h.

6. Discussion

6.1 Dominance of either of two aspects
There seems to be two aspects in the transitional
process of sharing vowels: the separation of proto-
types and the guidance of prototypes toward antici-
pated prototypes. The investigation in the previous
work (Ishihara et al., 2008) revealed that the aspect
of guidance can be caused by the balanced action of
two biases in the caregiver’s imitation, i.e., sensori-
motor magnets and auto-mirroring bias. The other
aspect, the separation of prototypes, can be consid-
ered a consequence of the infant’s articulation error
due to the larger error results in the larger distribu-
tion of the infant’s utterances.

A simulated developmental process can be divided
into two stages by focusing on which aspect is dom-
inant. In the flrst stage, the aspect of separation is
dominant due to the large articulation error. In this
stage, prototypes become separated from each other
because the separating efiect surpasses the guiding
efiect at some point. The dominance of the aspect
of separation becomes weakened gradually as proto-
types become separated from each other, since an
infant’s articulation error decreases with the separa-
tion, as modeled in eq. (8). Then the next stage,
where the aspect of guidance is dominant, begins.
In this stage, the infant’s prototypes can be guided
toward anticipated prototypes as in the latter half
of the period under conditions (c) and (d) shown in
Fig. 7, since the guiding efiect surpasses the sepa-
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rating efiect this time at some point.
The prototypes can be efiectively shared when the

transition of these dominances is achieved appro-
priately: There seems to be adequate di– culty h
of articulatory development, as under condition (c),
where all prototypes can correspond to any of the an-
ticipated prototypes. If the separating efiect is too
weak, as under conditions (a) and (b), the prototypes
cannot su– ciently spread to correspond to all antic-
ipated prototypes. On the other hand, if the sep-
aration efiect is too strong, as under condition (d),
the prototypes are not guided su– ciently, since the
separating efiect could cancel out the guiding efiect.

6.2 Conditions for rise of motherese
We can flnd the rise of motherese particularly in the
middle of the period in Fig. 5 (c). The left side of
Fig. 8 illustrates how the geometry of centers of the
caregiver’s vowel clusters (blue pentagon with solid
line) is stretched compared to that of her usual ones,
or her prototypes (blue pentagon with dotted line).
By comparing these results with those in the right
side of Fig. 8, which shows the motherese reported
by Kuhl et al. (Kuhl et al., 1997), we can see that
this stretching property resembles the property of a
real caregiver, i.e., the distribution of the caregiver’s
vowels addressed to infants (triangle with solid line)
is stretched compared to that of vowels addressed to
other adults (triangle with dotted line).

This characteristic seemed to arise in the simula-
tion when the caregiver underestimated the degree
of expansion of infant prototypes, in other words,
when this degree exceeded that of the anticipated
prototypes, as we can see in the left box of Fig. 8.
In such cases, the caregiver perceives the infant’s ut-
terances as exaggerated ones and thus the caregiver’s
utterances also become exaggerated through her im-
itations.

Figure 8: Stretching motherese in our simulation in the

middle of the period under condition (c) (left box) com-

pared to that reported by kuhl et al., 1997 (right box).

7. Conclusion
According to the results obtained in this study, we
suggest a more progressive picture of the develop-

mental process of sharing vowels through vocal imi-
tation as follows:

1. An infant’s prototypes begin to separate from
each other rapidly, since the separating efiect
caused by the infant’s articulation error exceeds
the guiding efiect caused by the caregiver’s bi-
ases. We can see this trend in the flrst half of the
period in Figs. 5 and 6.

2. As the infant prototypes expand, he/she begins
to utter vowels perceived by the caregiver as pro-
totypes, and thus they come to utter more proto-
typical vowels as phonemes of their mother lan-
guage. This trend can be seen in the flrst and
middle parts of the period in Fig. 5.

3. The geometry of anticipated prototypes expands
as the infant develops. Stretching motherese
arises when the degree of expansion of the infant’s
prototypes exceeds the degree of the caregiver’s
anticipation, as shown in Fig. 8.

4. The accuracy of infant articulation improves
along with the separation of his/her prototypes,
and the aspect of guidance becomes dominant
over the aspect of separation. This trend, where
the infant’s prototypes are gradually guided to-
ward the anticipated prototypes, can be seen in
the last half of the period under conditions (c)
and (d) in Fig. 7.

This picture of development includes two new hy-
potheses to be addressed: 1) It is the inaccuracy of
the infant’s articulation that separates his/her pro-
totypes, and 2) stretching motherese is a re ection of
the caregiver’s underestimation of the infant’s proto-
types expressed through the caregiver’s imitation.

We assume that the inaccuracy of infant artic-
ulation can be modeled as a Gaussian noise in
articulation command space and that its degree
is improved along with the separation of the in-
fant’s prototypes. However, there seems several
possible causes of this inaccuracy, such as the
immature levels of three key factors: auditory-
articulatory integration, articulatory muscles,
and auditory perception. Some studies have ad-
dressed issues related to this type of development
(Kanda et al., 2008, Guenther and Perkell, 2004,
Westermann and Miranda, 2004). Introducing their
flndings in our model would help us to improve it.

Motherese is one of the well-known characteristics
of caregivers addressing infants (Kuhl et al., 1997,
Fernald and Simon, 1984), and many researchers
have argued for its facilitating role in infant
development (Kuhl et al., 2008, Gogate et al., 2006,
Liu et al., 2003, Masataka, 1993). However, there
have been few explanations proposed for the mecha-
nism behind the rise of motherese. Our results sug-
gest that motherese comes from a caregiver’s uncon-
scious anticipation in sharing vowels with her infant
in an underestimating manner.
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Abstract

Continual and autonomous learning are key
features for a developmental agent in open-
ended environments. This paper presents a
mechanism of self-regulated learning to real-
ize them. Considering the fact that learning
progresses only when the learner is exposed to
appropriate level of uncertainty, we propose
that an agent’s learning process be guided
by the following two metacognitive strategies
throughout its development: (a) Switch of be-
havioral strategies to regulate the level of ex-
pected uncertainty, and (b) Switch of learning
strategies in accordance with the current sub-
jective uncertainty. With this mechanism, we
demonstrate efficient and stable online learn-
ing of a maze where only local perception is
allowed: the agent autonomously explores an
environment of significant-scale, and builds
a model that describes the hidden structure
perfectly.

1. Introduction

Imagine the life with a home companion robot hav-
ing empathetic interaction with you and your family,
sharing the same life space together. (Fujita, 2009)
discussed issues for realizing such an intelligent robot
and proposed a novel approach called Intelligence
Dynamics. Among the issues discussed, ability of
continual autonomous learning is crucial particularly
for a self-developmental agent that deals with open-
ended environments with many perceptual aliases.
With that in mind, a mechanism for accelerating the
learning process online is definitely required.

Besides studies on learning algorithms per se,
learning acceleration is mostly studied in the area
of active data sampling. In this domain, data to
learn is not given: it is the learner itself that de-
cides its behaviors and consequently the experience
to be learned. Choice of experience has decisive
influence not only on learning results but also on
learning efficiency. Hence, strategy for exploring to
gain proper experience (action and observation se-
quences) in the proper order is one topic of consid-
erable significance to an autonomous learning agent.

Reinforcement learning is a major approach trying
to find the best policy for maximizing reward. It is
quite unique in that its exploration is focused only
in areas where maximum reward is expected. This
simplification contributes much to efficient learning
but at the expense of abandoning reward-free com-
plete model acquisition. (Şimşek and Barto, 2006)
proposed a formulation of a reinforcement learning
agent that focuses ‘Optimal Exploration’ by intro-
ducing intrinsic reward, but still it is not reward-
free: extrinsic reward must be defined in advance of
the exploration. Extended formulation in Partially
Observable Markov Decision Process (POMDP) case
needs more investigation, too.

The adoption of intrinsic motivations as a useful
behavioral strategy is a common approach to ex-
ploration and efficient learning. (Sabe et al., 2006)
proposed an open-ended system that autonomously
develops by setting itself appropriate tasks using
a motivational mechanism inspired by the Flow
Theory (Csikszentmihalyi, 1990). Another self-
developmental system with the idea of ‘Intelligent
Adaptive Curiosity’ is proposed and the demon-
strated results (Oudeyer et al., 2005) are quite at-
tractive, though the experimental situations are
rather small and a bit too ideal. In reality, curios-
ity driven behavioral strategies may be of little avail
after the agent gets lost as a result of its curios-
ity, which fact is less-considered in most literatures.
Learning efficiency falls off dramatically in such sit-
uations, and a recovering strategy becomes more im-
portant for continual autonomous learning.

We insist, therefore, that the behavioral strategy
must be changed depending on the learner’s status
of understanding the world, in order to achieve the
maximum efficiency in lifelong learning.

Yet another point of importance to argue is a tim-
ing regulation of the entire model update. A timing-
predefined additional learning should be avoided, be-
cause forced learning in a completely incomprehensi-
ble situation may result in a breaking of the already
acquired structures. Consequently, learning strategy
also must be changed depending on a learner’s sub-
jective uncertainty in understanding the world.

Above discussion naturally leads to insights on
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Table 1: Outline of our self-regulation mechanism. (a),

(b), (c), and (d) represents different research areas.

Quoted terms are the names of our strategy, described

in sections 2.3 and 2.4. Meta-strategies for regulating

them are not explicitly shown, but explained in the text.

Metacognitive awareness
Known Unknown

Behavioral
strategy

(a) ‘Exploration’ (b) ‘Identification’

Learning
strategy

(c) ‘Global update’ (d) ‘Local update’

the importance of metacognition in learning and on
the advantages of appropriately regulated behavioral
and learning strategies. This paper presents a mech-
anism of such metacognition and regulations with
experimental demonstrations of its effectiveness.

Section 2 provides an overview of the self-regulated
learning mechanism. Section 3 introduces the formu-
lation of POMDP and an enhanced version of Hidden
Markov Models (HMM) as a learning model. Then
the implementation example of the proposed mech-
anism is described in this POMDP + HMM case.
Experimental results, supporting our approach, are
reported in section 4, including the demonstration
of efficient and stable learning of a large HMM (the
number of parameters to be learned is over a million).
Section 5 discusses comparison with related works,
and some limitations. Finally, conclusions and fu-
ture works are presented in section 6.

2. Self-regulation mechanism for an
autonomous learning agent

In educational psychology, it is commonly shared
that changing one’s strategy for learning in accor-
dance with the judgment on one’s knowing can
greatly improve learning. This kind of learning
process, guided by metacognition, is called Self-
regulated Learning (Zimmerman, 1990), and shows
a marked similarity to our approach.

The essence of self-regulated learning is metacog-
nitive awareness and metacognitive regulation. The
former is often described as “knowing about one’s
knowing”, and corresponds to the process, in our ap-
proach, that judges whether current situation is well
understood or not. For the latter mechanism, we
have two meta-strategies: one for regulating behav-
ioral strategy, and the other for regulating learning
strategy. A brief outline of our self-regulation mech-
anism is shown in Table 1.

Researches on behavioral strategy in ‘known’ sit-
uations are common, particularly in domains related
to reinforcement learning and intrinsic motivations.
This research area is shown by (a) in Table 1. (The
term ‘known’ here means the current position in state

space is known.) Researches in other areas are not
well studied, especially in areas (c) and (d).

In the following discussions, we will use Z to in-
dicate internal state variable of the learning model
which variable uniquely describes a situation of the
learner and surrounding environments. πt is a prior
probability distribution over Z at time t and zt is
an instance of Z. ot and ut are used for observa-
tions and actions at time t respectively, and their
time sequence is sometimes abbreviated as O and U .
Parameters of the learning model is denoted by λ.

2.1 Internal state estimation with variable-
length recognition window approach

Internal state estimation for time t is defined as a
process evaluating P (Zt|πt, ot,λ) where the prior πt

is estimated using the past sequence of actions and
observations: U ≡ {. . . , ut−1},O ≡ {. . . , ot−1}. (An
abbreviation P (Zt) may be used for convenience.)

In order to avoid difficulties caused by the fixed
length of recognition window, i.e. the length of data
sequence U and O, we employed a variable-length
recognition window approach:
1. Start with the window length w = 0 and πt as a

uniform distribution.
2. Estimate the current internal state P (Zt|πt, ot,λ)

and calculate its entropy: Hw(P (Zt)).
3. If the window length w is long enough and the

sequence {H0, . . . , Hw} has converged, quit with
the last estimation (of the longest window).
Abort, if the window length w gets too long.
Otherwise continue with w = w + 1.

4. Estimate the current prior P (πt|πt−w,Uw,Ow,λ)
with πt−w as a uniform distribution and Uw ≡
{ut−w, . . . , ut−1},Ow ≡ {ot−w, . . . , ot−1}.
Then go back to step 2.

Estimated result is a sequence of probability dis-
tribution over Z for each time step in [t−w, t]. Model
dependent algorithms will be applied, to extract the
most likely state transition sequence {zt−w, . . . , zt}
from the result.

2.2 Metacognitive awareness of ‘known’ and
‘unknown’

Metacognition of whether current situation is well
known or unknown is the first step of self-regulation.
It can be judged in the following way:
1. Estimate the time sequence of Z up to current

time t: {. . . , zt−1, zt} using the method described
in subsection 2.1.
If the estimation process aborted, the current
situation is clearly ‘unknown’.

2. Evaluate the entropy of the probability distribu-
tion of the current internal state H(P (Zt)) and
compare it with a threshold θH .
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In case H(P (Zt)) > θH , then the current state is
too ambiguous and thus ‘unknown’.

3. Evaluate the occurrence probabilities of all the
observations and actions in the estimated time
sequence of most likely Z. If there exists a time
t s.t. P (ot|zt) < θP

o

or P (ut|zt−1, zt) < θP
u

for appropriate thresholds θP
o

and θP
u

, then the
current model will be judged as insufficient for
explaining the recent experience. The current
state is, of course, ‘unknown’.

4. Otherwise the state is ‘known’.
The advantage of metacognition is to provide a

learner with a choice to continue with current sit-
uation kept as ‘unknown’: the most likely state is
not necessarily the best estimation of the current
state. Hence required are both behavioral and learn-
ing strategies that can work in ‘unknown’ situations.

2.3 Metacognitive regulation of behavior:
Exploration and Identification

Learning only progresses when the learner is exposed
to appropriate level of uncertainty. In situations full
of uncertainty, learning is too difficult, while nothing
is left to learn in situations without uncertainty. An
autonomous learner therefore tries to regulate the
level of uncertainty in order to achieve the maximum
learning efficiency in the given environment.

In this subsection, we present a mechanism for this
purpose, i.e. meta-strategy for switching the follow-
ing two behavioral strategies: uncertainty increasing
strategy and uncertainty reducing strategy, namely
‘exploration’ and ‘identification’, respectively.
Exploration – Uncertainty increasing strategy:
This strategy is to take a sequence of actions
U ≡ {ut, . . .} to make the entropy H(P (Z)) maxi-
mum at some time in the future, given the current
prior probability distribution πt and observation ot:
argmax

U

X

O
P (O|πt, ot,U , λ)H(P (Z|πt, ot,O,U ,λ),

where O is a set of possible sequences of future
observations.

What this strategy tries to maximize is an expec-
tation of entropy of a posterior probability distribu-
tion over Z, given possible future sequence U and
O. This strategy leads to such behaviors exploring a
never tried transition rather than a randomly chosen
transition. Note the difference with strategies such
as argmax

U
H(P (Z|πt,ot,U , λ)).

Identification – Uncertainty reducing strategy:
argmin

U

X

O
P (O|πt, ot,U ,λ)H(P (Z|πt, ot,O,U ,λ).

This is just the opposite of the explorative strategy
and tries to take such actions {ut, . . .} that best
reduce the ambiguity in internal variable Z. But
in those cases where environments are fraught with
uncertainties, calculation of the prior πt may be

troublesome, because normal state estimation will
not be reliable at all. Consequently, a variant of
state estimation mechanism with variable-length
recognition window (described in section 2.1) is used
with modification that the occurrence evaluation
procedure (step 3. in section 2.2) be in place instead
of the original entropy convergence evaluation
procedure (step 3. in section 2.1). Thus, πt can
be estimated using the longest segment of the past
sequence that is consistent with the model λ.

With this strategy, the agent selects the most in-
formative action with a hope of finding itself back in
the known region. At least, it can avoid meaningless
behaviors even in the unknown region.
Meta-strategy for switching Exploration and

Identification:
The idea is just to switch strategies depending on the
judgment of current situation: ‘exploration’ strategy
in ‘known’ situation and ‘identification’, strategy in
‘unknown’ situation. This meta-strategy tries to in-
crease uncertainty if the situation is known with less
uncertainty, and to reduce it reversely in case of un-
known situation which is full of uncertainty. As a re-
sult, the level of uncertainty is adequately regulated,
and the agent’s learning efficiency is improved.

2.4 Metacognitive regulation of learning:
Global update and Local update

One important fact we have found is that it is de-
structive to do normal incremental learning when
the agent is in too much uncertainties. Two types
of learning strategy are prepared and used tactfully
to settle this problem.
Global update: This is just a normal incremental
learning of the model employed. Model parameter λ
is globally updated, adapting to the recently expe-
rienced action and observation sequences in balance
with the past. In case the new experience can be
grounded solidly on the model, this learning process
is useful for refining the learning result.
Local update: This learning is rather improvising.
The model is expanded locally with a flavor of one-
shot learning, and most of the model parameters are
left untouched. Relatively local and isolated repre-
sentation describing the recent experience is gener-
ated and loosely associated to the rest of the model.
Meta-strategy for switching Global update

and Local update: In familiar situations, where ex-
perienced action and observation sequences are well-
grounded to the model, the agent continuously up-
dates the model (Global update strategy). If the
situation becomes ‘unknown’, it immediately stops
global update and switches to another strategy: lo-
cal update is carried out instead, and at the same
time, all the sequences of the unfamiliar experience
are stored for later use in global update. After the
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situation gets familiar again, the stored sequences
will become interpretable in the light of locally up-
dated model. Then the agent can globally update
the model using all the experience of the wandering:
entering the unknown from the known, and finally
coming back to the known again.

3. Implementation example of the
self-regulation mechanism

The above formulation is non-specific and hence is
applicable to many tasks, environments, and learning
models. Here we apply it to an autonomous learn-
ing agent in POMDP environments and present its
implementation details.

In this paper, a POMDP is described by the tuple
(Z,π, A,B, V,W ), where Z is a set of hidden states ,
π is a prior probability distribution over these states,
W is a set of actions, and A is a transition function
that maps Z ×W into discrete probability distribu-
tions over Z. The emission function B maps Z into
discrete probability distributions over V . Thus, ob-
servations from V can be perceived, while the states
in Z are not directly observable. We take it for
granted that the size of Z may increase with time
and experience in open-ended environments.

3.1 Enhanced HMM for modeling POMDP

We enhanced HMMs to serve as predictive mod-
els in POMDP environments. The enhancement
itself has been found to be quite similar to what
(Chrisman, 1992) did. Specifically, we use a discrete
ergodic (fully-connected) HMM with a simple action
representation extension: the 2-D transition proba-
bility matrix of size Z×Z is replaced by a 3-D matrix
of size Z×Z×W which can be viewed as a set of 2-D
transition matrices: each matrix element represents
the effect of each action w ∈ W .

When the environmental model of this type is fully
acquired, the agent can execute any tasks reward-
freely using the dynamic programming technique.

In order to estimate the parameters of the model,
a slightly modified version of Baum-Welch algorithm
is used: transition probability aij is simply replaced
by a corresponding conditional probability aij(ut),
where ut is a discrete action at time t.

3.2 Split-and-merge technique for a stable
convergence in HMM learning

Parameter estimation of an ergodic HMM can be
easily trapped in a local minimum, because its full-
connectedness provides too much amount of freedom
for modeling the world. We, therefore, introduced
two types of constraints in the learning process.

The first one, namely single-observation-per-state,
is as follows: a hidden state which has high prob-

Figure 1: Block diagram of a self-developmental agent.

abilities for two or more observation symbols will
be forcedly split into multiple states, one for each
of the observation symbols. The second one is for
reducing the redundant states: if there exist some
states that have in common (a) the same transition
source or destination state for the same action, and
(b) the same observation symbol mainly associated,
then they will be merged into a single state.

These regulations are processed every time after
the convergence of the Baum-Welch iteration and in
case there exist any nodes newly split or merged, the
learning process will go back to the beginning of the
Baum-Welch step.

3.3 Modeling a self-developmental agent

Figure 1 shows the entire block diagram of our model
of a self-developmental agent. Utilizing these func-
tional modules in coordinated manner, the agent au-
tonomously explores the POMDP environment and
incrementally acquires the model of its hidden states.

The interface between the environment and the
agent is abstracted as a sequence of actions and ob-
servations. At every time step, the agent outputs an
action symbol towards the environment and receives
an observation symbol as a result of its action. The
agent has no prior knowledge: neither on the rela-
tions among action/observation symbols nor on the
relations between observations and action results.

3.4 Metacognitive awareness in case of the
enhanced HMM

At every execution step, the state estimator module
has to recognize whether the agent is in the ‘known’
situation or in the ‘unknown’ situation. The pro-
cedure described in sections 2.1 and 2.2 are imple-
mented for the enhanced HMM in the following way.
In order to estimate the most likely state transition
sequence for the history of actions and observations,
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Figure 2: Definitions of ‘open edge’ and ‘open node’.

Viterbi algorithm is used with the same simple mod-
ification described in section 3.1: transition proba-
bility aij being replaced by aij(ut). The occurrence
probabilities referred in step 3. in section 2.2 are
directly represented in the parameters of the HMM:
P (ot|zt) and P (ut|zt−1, zt) can be found in the ob-
servation and transition probability parameters B
and A respectively.

3.5 Open-spot exploration

When the agent is confident of its current state, it
tries to increase the expected uncertainty of the in-
ternal states as described in section 2.3. We imple-
ment this behavior as a three-step-procedure: (1)
find less-explored states, (2) plan the path to one
of them, and (3) go there, trying one of the less-
experienced transitions.

Figure 2 shows a basic idea to find less-explored
states. Each node represents a hidden state of the
HMM, and the arcs connecting the nodes are ma-
jor transitions between the states. Dotted circles
are states in the complete model which have not
yet structured in the currently acquired model. Dot-
ted arcs, namely ‘open edge’, represent undiscovered
transitions due to the lack of experience. A node
which have one or more open edges is called an ‘open
node’ and the open node with the attached open
edge(s) are collectively referred to as an ‘open-spot’.

If the transition probability from a state z by an
action u makes a widespread distribution, the pair of
(z, u) specifies an open-spot. Hence open-spots can
be easily found by investigating the transition prob-
ability matrix of the learned HMM. Once an open-
spot has been found, the action sequence to reach
the corresponding open node can be planned using
the dynamic programming method, and the action
to explore the open edge from there is obviously u.

With this behavioral strategy, i.e. ‘open-spot ex-
ploration’, the agent can efficiently move around
in the environment, aiming to explore not-yet-
discovered states and transitions and to gain useful
information for the model learning.

3.6 Identification behavior

When the agent fails to determine its current state
and gets lost, the behavioral strategy switches to the
uncertainty reducing one.

In our implementation, the prior πt is estimated
first, as described in section 2.3 and breadth-first
search is employed to find the minimum expectation
of the entropy. In the search process, (a) unlikely
observation branches are pruned early, and (b) the
search depth is fixed at the first finding of a node
with acceptably low entropy.

This simple mechanism sufficiently works: giving
a shortest plan for identification in a known region,
and avoiding meaningless behaviors (staying in the
same place or just going back and forth, for example)
even in the unknown region.

3.7 Learning strategies and their regulation

For the global update of an HMM, we employed
a method referred to as “Ensemble Training for
HMM within an Incremental Learning setting”
(Cavalin et al., 2008) with the split-and-merge tech-
nique explained in section 3.2.

The local update is implemented as follows. (1)
Every time step in unknown situation, a new state
associated with the current observation is added in
the HMM and linked from the previous state by the
last action executed. (2) By recognizing a 1-step
sequence (ut, ot), analogous states which exhibit a
high probability for the sequence are gathered from
the known region. (3) The parameters related to the
newly-added state are initialized using the common
properties extracted from those analogous states.

Once the agent successfully recognizes that the sit-
uation has become well known again, those states
added during the wandering in unknown situation
are reinterpreted as a whole sequence. This process
integrates the global model and the locally updated
model with some adjustments of added states and
transitions. Then global update process is executed
to consolidate the whole sequence experienced during
the unknown period and to refine the model.

4. Experimental evaluation of self-
regulation mechanism

4.1 Experimental settings

In order to evaluate the effectiveness of our pro-
posed mechanism, we arrange a maze-like environ-
ment shown in Fig. 3. In this environment, the
agent observes one of 16 observation symbols (Fig. 3
(d)) depending on its position, which is the hidden
factor to be structured. The agent can move one cell
according to the selected action (Fig. 3 (c)), but in
case it hits a wall, its position will not change.

Note that the agent has no prior knowledge, such
as “go-right action cancels go-left”, “cannot move to
the wall direction”, and etc. All the knowledge must
be learned from the experience. Additionally, there
are many confusing areas in the environment and
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Figure 3: (a) Maze-like environment. (b) Example view

of the acquired structure in the HMM. (Circle: internal

state. Arrow: transition between internal states.) (c) 5

action symbols. (d) 16 observation symbols.

thus required is a high level of ability for finding the
hidden structure behind observations.

At first, the agent moves around the region la-
beled as ‘known’ (Fig. 3 (a)) for 16000 time steps.
Using this experience, the batch learning process of
the HMM is carried out to build up an initial model
of the known region in the environment.

After that, the agent starts exploring the rest of
the world and continues self-developing. Parameters
used in the metacognition process (section 2.2) are
as follows: [θH = 1.0, θP

o

= 0.8, θP
u

= 0.1].

4.2 Efficiency of the open-spot exploration
strategy and the identification strategy

In this subsection, we evaluate the effect of (a) the
exploration strategy in known situation and (b) the
identification strategy in unknown situation, from a
point of view of learning efficiency. Learning effi-
ciency is measured by a number of time steps elapsed
since the agent first stepped into the ‘unknown’ re-
gion until a perfect model of the entire environment
is acquired. Behavioral strategy for comparison is:
Random: move one cell randomly in the open direc-
tion. (True random action selection that allows wall-
hitting is extremely inefficient and hence ignored.)
Forward: move one cell randomly in the open di-
rection except for the backward direction which is
chosen only when the agent faces a dead-end.
We executed the experiment 10 times for each of the
strategies and calculate the mean and variance of the
elapsed time. (Fig. 4) Small elapsed time is a proof
of the contribution to learning efficiency, and small
variance indicates a stable performance.

In the first experiment (Fig. 4 (a)), effects of the
behavioral strategy in known situation are compared:
One agent takes open-spot exploration strategy in
known situation (‘Exploration’), while another takes
‘Forward’ strategy and the last takes ‘Random’ strat-
egy. All agents take ‘Identification’ strategy in un-

(a) (b)

Figure 4: (a) Efficiency evaluation of open-spot explo-

ration in known region. (b) Efficiency evaluation of iden-

tification strategy in unknown region.

known situation. Results show that systematic ex-
ploration strategy is crucial for the efficiency of self-
development.

In the second experiment (Fig. 4 (b)), effects
of the strategy in unknown situation are compared:
One takes ‘Identification’ strategy, while the other
takes ‘Random’ strategy. Both agents take ‘Explo-
ration’ strategy in known situation. Results suggest
that ‘Identification’ strategy sufficiently works in un-
known situation, though its formulation utilizes only
the knowledge in known situation.

4.3 Effectiveness of regulating the learning
strategy

In order to evaluate the effectiveness of the metacog-
nitive regulation of the learning strategy, we compare
the performance of following two agents: (a) an agent
with the proposed mechanism and (b) an agent which
runs the incremental learning procedure every time
step despite its metacognitive awareness. Accurately
speaking, when the agent is in unknown situation, it
adds a new state in the HMM just the same way as
described in section 3.7 paragraph 2, and then exe-
cutes global update. (section 3.7 paragraph 1). The
behavioral strategies are metacognitively regulated
in both agents.

The experiment is repeated 10 times for each agent
and the results are always similar. One typical case
is shown in Fig. 5.

The agent with learning-regulation can build the
complete model of unknown region within 400 steps
in every trial. In this case, temporarily added new
states that represent the sequence in yet-unknown
region are anchored in both ends to the model of
known region, and then all the model parameters
are optimized for maximizing the likelihood of its
learning sequence. There are cases some redundant
states persist after the optimization, but the behav-
ioral strategy naturally guides the agent to such de-
fective areas again, and additional experience around
there progressively eliminates such duplications.

In contrast, the other agent cannot complete the
learning even after 1000 steps.(Fig. 5 (c)) It seems
that the newly added states are not sufficiently con-
strained (connected only to the previous states) at
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Figure 5: Effects of the learning strategy regulation. (a)

Result of the proposed method: Hidden states are per-

fectly structured. (b) Result of a periodic incremental

learning strategy. Many redundant states (drawn in the

same position with a slight shift) show the agent’s uncer-

tainty in understanding the environment. The agent was

busy investigating the uncertain areas and hence unvis-

ited area is left behind. (c) The uncertainty cannot be

resolved even after 1000 steps.

the timing of global optimization, and thus the op-
timization process of the HMM is easily trapped in
local maximum. Even if the agent visits the same
place again, those temporarily added states disturb
the right recognition, and thereby the agent tends to
consider the place as a new state. Figure 5 (c) is a
result of such negative spiral.

Those results show that the self-regulation of
learning strategy plays a crucial role for the ability
and efficiency of learning a new environment.

4.4 Efficiency and stability of learning in a
large-scale environment

For comparison with our self-regulated incremental
approach, commonly-used batch-learning approach
is tested in the environment shown in Fig. 6 (a).
20000-step action and observation sequence, col-
lected by wandering all over the maze, is used for
learning. We tried 10 times with different data sets,
but none of the learnings was successful (Fig. 6 (b)),
revealing the non-scalability of the approach.

Then we tested our approach in a larger environ-
ment shown in Fig. 6 (c). The experimental setting
is the same as previous sections except for the scale
of the world. The agent autonomously explores and
incrementally learns the environment under the reg-
ulation of the proposed mechanism. No confusion is
found in the final result after 3723 steps. (Fig. 6
(d)) HMM with 587 internal states is obtained with
its over a million (587 × (587 × 5 + 16)) parameters
properly set, which is intractable by a batch-learning
approach. We executed the experiment several times

Figure 6: HMM learning results of significant-scale en-

vironments. (a) 12 × 10 world used for batch learning.

(b) Result of batch learning using 20000-step sequence:

confusions of similar areas are not cleared up. (c) 20×30

world used for evaluation of our approach. (d) Learning

result of our approach: all of many confusing areas are

perfectly distinguished in less than 4000 steps. The agent

can move to anywhere using the shortest path.

and the results were always perfect, which demon-
strates the efficiency and stability of our proposed
mechanism even in a large scale environment.

5. Discussion

Firstly, we discuss the scalability of our mechanism.
Even in recent reinforcement learning researches,
the numbers of the hidden states of the learned
environments are rather small, up to 80 at most
(Info et al., 2004), and the environmental configura-
tions are also simple: just an E-shape maze, for ex-
ample. In researches that model large-scale environ-
ments, such as the one with Hierarchical POMDP
(Theocharous et al., 2004), the structures of the in-
ternal states are not self-organized from the learning
data, but are manually built. We thus say that one of
our major contributions is achieving a stable learning
of a large-scale POMDP environment.

Secondly, we discuss the generality of the mecha-
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nism. In our formulation of self-regulated learning,
nothing is assumed for the action and observation
symbols: their representations can be anything, and
they don’t need to have any topological or metric re-
lations. In addition, only the internal parameters of
the HMM are used for the agent’s decision making
and the values of input/output data have no direct
effect on its strategy. Our formulation, therefore, is
essentially task independent and can be applied to
many tasks, that can be modeled with a sequence
of action and observation symbols: Dynamics of a
pendulum, arm manipulations, an interaction model
between an artificial agent and a human, and etc.

Another point of discussion is continuous data
handling. Evaluations are limited only for discrete
symbols, because the implementation of the learning
model is based on discrete HMM. In case of continu-
ous observation, extension is straightforward: using
a continuous HMM with unimodal Gaussian obser-
vation model will be enough. But extension to con-
tinuous action is different. This is a limitation and
researches are needed for overcoming it.

The last topic is about noise robustness. In our ex-
periments, both observation and action process have
no noise. We examined the influence of noises by car-
rying out additional experiments with noisy observa-
tions. When the agent gets a contaminated observa-
tion, the estimation changes to ‘unknown’ and the
agent adds a new internal state with the wrong ob-
servation associated. If the noise ratio is not so high,
such as 1%, learning and planning are not so much
influenced. Learning mechanisms, i.e. open-spot ex-
ploration combined with HMM incremental learning
and split-and-merge technique, successfully work to
reduce the unnecessary redundancy in the learned
model. But in case the noise rate is around 10%,
the internal states created by wrong observations in-
crease too quickly before the agent identify the cur-
rent state correctly, and many redundant states are
left unresolved. This is a current disadvantage of our
model, and improvements are required in the way of
modeling and handling noisy data.

6. Conclusion and future works

We propose a self-regulation mechanism for realizing
continual and autonomous learning in open-ended
environments. The key points are metacognitive
awareness and regulation: both behavioral and learn-
ing strategies are regulated in accordance with the
agent’s subjective uncertainty in understanding the
current situation. The effectiveness of our approach
is shown with several experiments. Among others,
the agent autonomously explores and learns a signif-
icantly large POMDP environment efficiently.

Future works are to apply this mechanism (a) to
tasks in dynamically reconfigurable environments,
(b) to agents with continuous action and observa-

tion signals, and (c) to environments ruled by dif-
ferent type of dynamics. Extensions of the internal
model formulation are necessary, but we expect that
the self-regulation mechanism can be used as is.
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Abstract

A goal of epigenetic robotics is to design
a control architecture that implements an
ongoing, autonomous developmental process
which is unsupervised, unscheduled, and task-
independent. The developmental process we
are currently exploring contains three essen-
tial mechanisms: categorization, prediction,
and intrinsic motivation. In this paper we
describe a hybrid approach that uses Grow-
ing Neural Gas for categorization, neural net-
works for prediction, and Intelligent Adaptive
Curiosity for intrinsic motivation. We apply
this system to a physical robot operating in a
dynamic visual environment and analyze the
types of categories it forms.

1. Introduction

In a realistic environment, a robot is flooded with a
constant stream of perceptual information. In order
to use this information effectively for determining ac-
tions, a robot must have the ability to categorize its
experience. Based on these categories, a robot must
be able to predict how the environment will change
as a result of its actions. Most importantly, this pro-
cess of development should be driven by an intrinsic
motivation to explore the categories of its experi-
ence where it can make the most learning progress.
The developmental process we are currently explor-
ing contains these three essential mechanisms: cate-
gorization, prediction, and intrinsic motivation.

Psychologists Ryan and Deci define intrinsic moti-
vation as “the inherent tendency to seek out novelty
and challenges, to extend and exercise one’s capaci-
ties, to explore, and to learn” (Ryan and Deci, 2000,
p. 70). In order to determine what to explore, an
organism must compare the incoming stimuli from
the environment to its internal memory to discover
differences and similarities. This collative process,
a term coined by the psychologist Berlyne, is neces-
sary to evaluate the degree of novelty or incongruity
of the current stimuli with respect to the organism’s

past experiences or expectations (Berlyne, 1966). By
categorizing its experience, an organism can more
effectively decide which aspects of its environment
are novel and should be explored. In a recent sur-
vey of developmental robotics, Lungarella et. al.
state that categorization “is of such fundamental
importance for cognition and intelligent behavior
that a natural organism incapable of forming cat-
egories does not have much chance of survival”
(Lungarella et al., 2003, p. 161).

Although intrinsic motivation and categorization
are clearly intertwined, recent work in epigenetic
robotics has focused primarily on intrinsic motiva-
tion alone (Barto et al., 2004, Marshall et al., 2004,
Schmidhuber, 2006). One approach to intrinsic
motivation, known as Intelligent Adaptive Curios-
ity (IAC), employs a limited form of categoriza-
tion that divides the sensorimotor space into a set
of similarity-based regions (Oudeyer et al., 2007).
However, no abstractions of the sensorimotor data
are formed, and this top-down approach may take a
long time to create categories that accurately reflect
the structure of the sensorimotor space. In addition,
category formation is triggered by the number of ex-
emplars and not by the uniqueness of the exemplars,
which can lead to an excessive number of similar cat-
egories. Finally, IAC’s memory grows linearly with
each additional experience.

In this paper we propose a hybrid system that
combines IAC’s approach to intrinsic motivation
with a mechanism known as Growing Neural Gas
(GNG), which discovers relevant categories in sen-
sorimotor data (Fritzke, 1995). GNG’s bottom-up
approach to category formation quickly matches the
structure of the sensorimotor space and only forms
new categories when the existing ones are sufficiently
different from the current data. We call this sys-
tem Category-Based Intrinsic Motivation (CBIM).
We apply CBIM to a physical robot operating in a
dynamic visual environment and analyze the types of
categories it forms. First, we summarize GNG, IAC,
and introduce our hybrid system CBIM. Next, we
describe the physical robot and the experiment. Fi-
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nally, we present the results and discuss implications
and future work.

1.1 Growing Neural Gas

GNG is an unsupervised learning method for dimen-
sionality reduction (Fritzke, 1995). Given some high
dimensional distribution of data, such as the sensori-
motor data of a robot, a GNG will find a topological
structure that closely matches the given distribution.

A GNG consists of a network of units and edges
that are used to characterize the topological space
in which its input vectors reside. Each unit contains
a model vector that characterizes a portion of the
overall distribution. Taken together, the units and
edges of the GNG serve as a representative summary
of the given distribution. The dimensionality of the
network itself is not fixed in advance. The resulting
graph is able to expand or contract as necessary by
adding or deleting units and edges.

A given input vector is matched to the nearest
and next-nearest GNG units based on Euclidean dis-
tance. This distance is also used as a measure of er-
ror, which the GNG stores in the nearest unit. All
units connected to the nearest unit are moved to-
ward the input vector by a fraction of the error. In
this way, the GNG dynamically adapts to slight vari-
ations in the input signal that do not require the
addition of new units.

Each edge in the GNG is assigned an age that is
initially set to 0. If the nearest unit and the next-
nearest units are not connected, an edge is placed
between them; if they are connected, the age of the
edge between them is reset to 0. Edges throughout
the GNG above a given age threshold are pruned;
if this results in isolated units, those units are also
removed from the GNG.

A GNG begins with two units that are assigned
random initial model vectors. In the original GNG
(Fritzke, 1995), a new unit is added after a fixed
number of time steps determined by the user. This
unit’s model vector is placed between the unit with
the greatest accumulated error and its neighbor
with the greatest accumulated error. In an alter-
native implementation called an Equilibrium GNG
(Provost et al., 2006), units are only added when the
average error of the GNG’s units exceeds a given
threshold. This approach makes it possible to grow
the GNG in response to new data that doesn’t fit
the current topology of the network, but prevents
the addition of unnecessary units when the incoming
data is similar to existing model vectors.

Because a GNG is able to autonomously grow and
adapt over time, it is a suitable categorization mech-
anism for the open-ended learning system we propose
in this work.

1.2 Intelligent Adaptive Curiosity

IAC is a method for implementing intrinsic motiva-
tion. IAC has been successfully tested on a Sony
AIBO robot operating on a baby play mat with
various toys that can be bitten, swatted, and ob-
served (Oudeyer et al., 2007). Using IAC as its con-
trol mechanism, the AIBO clearly exhibited a de-
velopmental progression, first learning about simpler
aspects and later focusing on more complex aspects
of its environment.

The key idea of IAC is that the drive to learn
is based on maximizing learning progress. This is
achieved by creating a memory of all the experiences
encountered by the robot and subdividing this mem-
ory into similarity-based regions. Each region con-
tains an “expert” that is trying to learn to predict
the effect of taking actions in particular sensory sit-
uations. More formally, the expert is trying to map
the sensorimotor information at time t to the sensory
outcome at time t + 1: SM(t) −→ S(t + 1). Each
region monitors the errors of the expert over time
and generates a measure of learning progress, which
is essentially the change in the current mean error
rate with respect to an earlier mean error rate.

On each time step the robot consults this memory
in order to determine which action to take. First the
robot senses the world. Next, it generates a set of
candidate actions, either by enumerating all possibil-
ities or, if the space of actions is continuous, by gen-
erating a random sample of possible actions. Then
it concatenates each candidate action with the cur-
rent sensory information and probes the memory to
find all matching regions. With some high probabil-
ity it selects the candidate action associated with the
region with the maximal learning progress. Other-
wise it chooses a random region from the matched
set. It then executes the selected action, observes
the outcome, and uses this data to train the expert
associated with the selected region.

When a region’s sensorimotor context is pre-
dictable, initially its expert will make good progress
and be chosen frequently. As the expert succeeds
in learning, its progress will slow, and the learning
progress of other regions will surpass it. In this way,
IAC guides the robot to explore its environment in a
sensible way, focusing on those aspects where it can
make the best gains, and ignoring aspects that have
already been learned or are unlearnable.

Although each region of IAC is in a limited sense
a category, there is no abstraction taking place. Ev-
ery experience the robot has had (SM(t) paired with
S(t + 1)) is explicitly stored within the appropriate
region. Each region is limited to a fixed maximum
size (usually 250 exemplars). Once this maximum is
exceeded the region is split into two new sub-regions.
If the robot continues to experience very similar situ-
ations it will repeatedly form additional regions, even
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though they may not represent any significant dif-
ferences from existing regions. This excess region
formation will limit the effectiveness of IAC as it is
applied to richer, more complex domains.

1.3 Category-based Intrinsic Motivation

CBIM is an open-ended learning system that com-
bines GNG’s flexibility and power of abstraction
with IAC’s notion of region-based maximal learn-
ing progress. We use the Equilibrium GNG, which
only adds units based on accumulated error. Each
IAC region is associated with one GNG unit. Each
GNG unit model vector is determined by all of the
sensorimotor exemplars that have been mapped to
it. Each region stores a fixed number of exemplars,
only enough to calculate learning progress; the old-
est exemplars are removed as newer exemplars are
encountered.

Unlike IAC, the growth of CBIM’s memory is
bounded by the complexity of the robot’s sensory
and motor capabilities as well as the environment
because categories in CBIM are formed based on er-
ror and not simply on the quantity of experience. If
the robot repeatedly experiences very similar situa-
tions, the associated GNG model vectors will adjust
slightly to each experience. However, a new model
vector will only be created when the error across the
GNG grows too high. Then the new unit will be
added at precisely the point in the GNG where the
model vectors are least representative of the robot’s
experiences. In this way, CBIM’s categories mirror
the robot’s experiences, growing to handle new in-
formation or shrinking to remove spurious categories
that are not consistent with later experiences.

In the original IAC model, the region experts
were implemented as k-nearest neighbors (with k=1).
In CBIM, the region experts are implemented as
feed-forward neural networks with a single layer of
weights. Every time a sensorimotor vector is mapped
to a particular GNG unit, in the associated region
the weights of the neural network expert are updated
using standard backpropagation with SM(t) as the
input and S(t + 1) as the target. By using neural
networks as the experts, CBIM incorporates another
form of abstraction not found in IAC. Each neural
network expert makes generalizations of the sensori-
motor data in the process of learning to predict the
outcomes of actions. These generalizations are likely
to provide more robust behavior throughout the de-
velopmental process.

2. Experiments

In order to demonstrate the viability of CBIM, we
designed a physical environment for a robot to do
open-ended learning. For these experiments we used
a Rovio, which is a consumer-level robot equipped

Figure 1: The experimental environment with the devel-

oping Rovio robot in the center, a larger static red robot,
and a smaller moving blue robot.

with a camera. We wrote a Python interface us-
ing the open source Rovio API. The Python inter-
face allowed us to control the Rovio through Py-
robot, a robotics control platform that implements
a common API for both real and simulated robots
(Blank et al., 2006). Image processing was also han-
dled in Pyrobot.

The environment consisted of the Rovio in the cen-
ter of a green inflatable pool as shown in Figure
1. This provided a uniform backdrop, limiting the
robot’s vision to the arena, thus simplifying the vi-
sual stimulus. In addition to the green background,
two robots were placed within the arena to serve as
other objects of focus. A large, inactive red robot
was placed to one side of the environment, but close
enough to completely fill Rovio’s somewhat narrow
field of vision when the Rovio looked directly at it.
A smaller blue robot continuously moved back and
forth on a track, using sensors to move from wall to
wall. The Rovio was placed in the middle of this
environment, capable only of rotating left or right.
The Rovio could also choose not to move at all.

The developing Rovio robot experienced the world
through vision, receiving sensory input extracted
from its camera images. The Pyrobot vision system
was configured to filter images from the Rovio’s cam-
era to find the particular colors associated with each
object in the environment: the green walls, the blue
robot, and the red robot. However, due to variabil-
ity in lighting conditions, the filters were not com-
pletely accurate. For example, a particular object
might be present in the image, but its color might
not be recognized by any of the filters. Each color
channel was further filtered into a blob—a bounding
box surrounding the largest mass of the respective
color in the image. Figure 2 shows an image of the
blue robot from the Rovio’s camera that has been
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Figure 2: A camera image from the Rovio robot to which

a blue blobify filter has been applied.

filtered for blue and then blobified.
The filter results were summarized in the sensory

data as follows. Binary inputs indicated whether
each color channel was active, meaning that an ob-
ject of the specified color was present in the current
image. Additionally, the robot received information
about the color channel it chose to focus on. In other
words, on each time step the robot could only attend
to one of the color channels. This choice was part of
its action decision. The area and relative position
of the largest blob in this chosen channel were pro-
vided. The area was scaled to a value between 0 and
1, normalized by the size of the entire camera image.
The relative position was represented as 0 for left,
0.5 for centered, and 1 for right. In summary, the
Rovio had access to five sensory inputs:

S(t) = (red, green, blue, blobArea, blobPosition)
It was frequently the case in this environment that

multiple color channels were active simultaneously.
For instance, if the robot was facing the upper-left
section of the environment (see Figure 1), it often
had all three color channels active: it could see the
red robot on its right, the blue robot on its left and
the green background in between. Because the green
background was almost always present in the camera
image, the green channel tended to be active most of
the time. Only when the Rovio was looking directly
at the red robot, which tended to fill its entire camera
image, would the green background not be seen. On
rare occasions (about 1% of the time) none of the
color channels were active due to the color variability
caused by lighting conditions.

The Rovio had two output commands: which color
channel to focus on and how much to rotate. The
color channel choice was a value between 0 and 1
that was divided into three equal bins. For values in
the range [0.0, 0.33] the choice was red; for values in
the range [0.34, 0.66] the choice was green; for values
in the range [0.67, 1.0] the choice was blue. Rotation

was a value between 0 and 1 that was divided into
seven equal bins, ranging from a hard left, to staying
still, to hard right. Thus the Rovio’s motor action
consisted of two values:

M(t) = (channelFocus, rotation)

For CBIM, this framework results in sensorimo-
tor vectors of 7 dimensions. Therefore each GNG
unit contains a 7-dimensional model vector. Each
IAC region expert tries to predict the mapping from
7-dimensional sensorimotor vectors to 5-dimensional
sensory vectors.

The goal of the experiment is for the robot to cat-
egorize its world, learning and making progress in
predicting how the objects in this environment be-
have. Each object in the environment is brightly and
evenly colored, so as to provide clear visual stimulus
for the Rovio. Because each object in the environ-
ment has a unique color, each color channel can view
only one object, eliminating possible confusion be-
tween objects.

In addition to its distinguishing color, each object
offers unique learning opportunities with varying lev-
els of predictability. The green walls offer a constant,
large background making them quite predictable.
For example, if on the current time step only the
green channel is active and the Rovio chooses to fo-
cus on green and make a small turn to either the
left or the right, it is highly likely that on the next
time step the green channel will remain active and
its area and relative position will be nearly identical
to the previous time step. The red, static robot is
also predictable, but is visible in only a few positions.
For example, if the Rovio is directly facing the red
robot with only the red channel active and chooses
to focus on red and turn right, on the next time step
it is likely that both the red and green channels will
be active, and the red blob will be positioned to the
left and be half the size it was previously. The blue
robot is much harder to predict because it is con-
stantly moving.

In this environment the robot must learn to predict
the relative position and size of the objects in its
visual field. What it will see at the next time step
depends both on what it is currently seeing and what
action it chooses to take. Over time, the developing
robot should focus on all three objects, associating
each object with a particular color channel.

Experiments lasted for 5000 time steps and took
approximately 2 hours. We conducted 10 CBIM
experiments using the Rovio. The IAC parameter
settings were: 10 randomly generated candidate ac-
tions; 15% chance of selecting a random action; mean
error rate was smoothed over 15 time steps; learn-
ing progress was calculated by comparing mean er-
ror rates separated by 10 time steps; and experts
were feed-forward neural networks with a single layer
of weights using a learning rate of 0.5 and no mo-
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Figure 3: The number of units in the GNG of a typical

CBIM run. In this run, after 210 time steps no additional
units were inserted.

mentum. The Equilibrium GNG parameter settings
were: error threshold of 0.5 to add a new unit; win-
ning unit learning rate of 0.2; and neighbor unit
learning rate of 0.006.

At the beginning of each experiment, the Rovio
was positioned in an initial pose, facing away from
the red and blue robots in the environment. This was
done so as not to bias the early category formation
toward either red or blue. If the developing robot ini-
tially decides to turn right, it will see the blue robot
first and form categories to cover this situation. If
instead, it initially decides to turn left, it will see the
red robot first and form a different sequence of cate-
gories. The Rovio rapidly explored the world early in
the experiment, forming many categories in the first
few hundred time steps. The Rovio then attended
to particular features of the environment. Common
behaviors included investigating the bounds of the
red robot, attempting to track the blue robot, and
focusing on the area in which the blue robot occu-
pied the same field of view as the red robot. Each
experiment varied in the order that CBIM created
categories and in the amount of time the developing
robot spent focusing on each color channel. The next
section analyzes the results in depth.

3. Results

Because categorization is of such fundamental im-
portance to CBIM, we will first focus our analysis
on how the GNG evolves over time. Then we will
discuss the role that intrinsic motivation plays in the
robot’s choice of actions in its vision-based environ-
ment.

3.1 GNG categories

Although results differ from run to run, there are
clear GNG formation trends that directly correspond

to the robot encountering new sensory experiences
in its environment. Recall that the GNG begins
with two units which are assigned random model
vectors. Once the robot senses the world for the
first time, these initial units immediately accumu-
late enough error to trigger the formation of new
units. At the beginning of the run, only the environ-
ment’s green background is within the robot’s cam-
era view. Therefore, the first new GNG units are
added to reflect that the green channel is active. As
the robot begins to turn, it will either turn to the left
and encounter the red robot or turn to the right and
encounter the blue robot. As soon as one of these
robots is in view, again the GNG immediately re-
sponds by constructing new units to represent that
a new color channel has been activated for the first
time. As the run continues, the robot will eventually
see both the red and blue robot simultaneously. The
first time this occurs, the GNG creates new units to
represent this unfamiliar event.

Early on, much of the incoming sensorimotor data
is novel, thus the bulk of new GNG units are added
in the first 100 time steps and taper off rather quickly
after that. Figure 3 shows how fast the GNG grows
at the start of one particular run. In this case the
GNG ceases to add more units by time step 210; in
other runs, the last unit is added between time steps
250 and 400. This is a clear improvement on the
linear growth of IAC regions.

Figure 7 shows a series of two-dimensional repre-
sentations of the GNG model vectors and edges at
different time steps during the run. To create these
plots, a principal component analysis was performed
on the final configuration of the 7-dimensional GNG
model vectors from the last time step (step 5000).
The projections of the model vectors onto the first
two principal components were then plotted for each
of the time steps shown, with respect to the com-
puted eigenbasis. The plots show the evolution of
the model vectors and edges of the GNG in more
detail.

In Figure 7, the GNG model vectors are repre-
sented by the large points that are connected via
edges. The clusters of small points show the sensori-
motor inputs presented to the GNG during the run,
with the input on the current time step indicated by
a small circle. Each cluster of points represents a
similar set of sensorimotor contexts experienced by
the robot. The labels represent which color channels
are active.

At time step 0, the two random initial model vec-
tors happen to both represent having the red and
blue channels active simultaneously. All of the initial
experiences of the robot have only the green chan-
nel active, and new GNG model vectors are added
to try to reduce the error between the existing units
and the new sensory data. By time step 5, it is clear
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Figure 4: Results of a typical random controller.

that the GNG is growing to try to accommodate the
repeated green channel exemplars near the center.
By time step 25, a number of GNG units are now
covering the green channel exemplars. At time step
35, the robot has turned enough to see both the blue
robot and red robot simultaneously (with the green
walls) for the first time. The GNG is again growing
to accommodate this new event. Because the GNG
always adds units between existing units, it can cre-
ate intermediate model vectors that may not be rep-
resentative of any of the data encountered so far.
By time step 65, the model vectors at the exterior
of the GNG are well matched with the data, while
those at the center are not. Near the end of the run,
at time step 4000, many of these intermediate units
and edges have been removed, and the structure of
the GNG more closely matches the underlying data
representation.

In the original IAC model, regions are sub-divided
based only on the quantity of exemplars. Initially ev-
ery experience is grouped within a single IAC region.
Once this region grows beyond the size limit, it splits
into two sub-regions. It can take quite a long time
before the repeated splitting of IAC regions begins to
accurately reflect the sensorimotor data. In contrast,
CBIM’s GNG regions are formed based on encoun-
tering novel experiences. Each unfamiliar event en-
countered by the robot is immediately marked by a
new category, and only novel experiences will trigger
the formation of categories.

3.2 Intrinsically motivated behavior

In order to demonstrate that CBIM categorizes its
sensorimotor space appropriately and uses these cat-
egories to effectively select learning experiences, a
series of control experiments were executed for com-
parison. In the control experiments, actions were
simply selected randomly without the use of cate-
gorization, prediction, or intrinsic motivation. We
will refer to occasions when the Rovio selects a color
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Figure 5: Results of a typical CBIM controller.

channel while an object of the corresponding color is
in its camera view as a matched selection. Figure 4
shows the results of a typical control run. The cor-
relation coefficient between the percentage of time
when the blue channel is chosen and when the blue
channel is actually matched is only 0.17.

However, in Figure 5, the channel choice and
matched selection for CBIM is much more tightly
coupled, with a correlation coefficient of 0.57. When
this run is divided into thirds, the correlation coef-
ficients for each third improves from 0.42, to 0.59,
ending at 0.65. This increase in correlation between
choosing the blue channel and seeing the blue ob-
ject indicates that Rovio was progressively learning
to track the movement of the small blue robot over
time.

Based on the predictability of each object, we ex-
pected that CBIM would cause the Rovio to first
focus on the red stationary robot and then on the
moving blue robot. Figure 6 shows the same CBIM
run from Figure 5 in which a shift in focus from the
red object to the blue object can be seen. In the
first 1500 steps, the Rovio was not very successful at
finding either the red or blue object. Then, in the
middle of the run, it was able to find and focus on
both the red and blue objects in turn, with a peak
in finding the red object at about 2800 steps. After
about 4300 steps, there is a clear shift in focus away
from the red object and toward the blue object. This
provides evidence of a developmental trajectory.

In the five control experiments done, the random
action selection led to a focus of 33% on each of the
three color channels, as expected. In contrast, in the
10 CBIM experiments done, the intrinsically moti-
vated action selection led to a more varied focus. In
three of the experiments, blue was the primary focus
37% of the time on average. In three of the experi-
ments, red was the primary focus 37% of the time on
average. Finally, in the remaining four experiments,
both blue and red were the primary focus 34% of the
time on average for each. In a statistical analysis of
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Figure 6: Evidence of a developmental shift from focus-

ing on the more predictable red object to the harder to
predict blue object.

the focus data, CBIM’s green focus was significantly
lower (p < .01) than either its red or blue focus across
all of the experiments. Given that the green back-
ground was visible on nearly every time step, and was
the easiest of the color channels to predict, the fact
that CBIM’s overall focus is primarily on the other
two channels indicates that the intrinsic motivation
is pushing the robot to explore the more challenging
aspects of its environment.

4. Discussion

The results of our experiment suggest that the cat-
egorizational power of the GNG combined with the
strength of IAC’s measure of learning progress is ef-
fective at developing a useful set of categories that
allow the robot to maximize its learning potential
in the given environment. The set of model vectors
developed by the GNG is a reflection of the particu-
lar characteristics of the sensorimotor stream expe-
rienced by the robot, which grows only as much as
is necessary to capture the topological relationships
between the data. This approach avoids the use of ad
hoc mechanisms such as region-splitting and the ad-
dition of unnecessary model vectors at fixed time in-
tervals that were present in earlier models. Recently
a new variation of IAC has been developed to address
some of the inefficiencies of the region-splitting ap-
proach (Baranes and Oudeyer, 2009). Yet even this
improved version could benefit from the bottom-up
categorization approach used in CBIM.

One remaining challenge for CBIM is its limited
ability to handle time-dependent relationships in the
robot’s sensorimotor stream. Each expert bases its
response only on the sensorimotor input at the cur-
rent time step, without taking into account the re-
cent past experiences of the robot. One possible di-
rection of future work would be to incorporate recur-
rent neural networks into the model in order to take

advantage of temporal information.
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Figure 7: A 2-dimensional visualization of the 7-dimensional GNG model vectors and edges as they evolve over time

in one CBIM run. The labels indicate which color channels are active for each sub-group of GNG units.
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Abstract

In this paper we present a cognitive robotic
model of object manipulation (i.e. grasping)
based on psychologically plausible embodied
cognition principles. Specifically, the robotic
simulation model is inspired by recent theo-
ries of embodied cognition, in which vision,
action and semantic systems are linked to-
gether in a dynamic and mutually interactive
manner. The robotic agent is based on a sim-
ulation model of the iCub humanoid robot.
It uses a connectionist control system trained
with experimental data on object manipula-
tion. Simulation analyses show that the robot
is capable to reproduce phenomena observed
in human experiments, such as the Stimulus-
Response Compatibility e↵ect.

1. Introduction

The primary aim of our work is to develop a cogni-
tive robotic model of the processes involved in ob-
ject grasping and manipulation following the em-
bodied cognition view of action and vision integra-
tion and micro-a↵ordance e↵ects (Tucker and Ellis,
2001). The task typically involves how to select,
based on the agent’s knowledge and representations
of the world, one object from several, grasp the ob-
ject and use it in an appropriate manner. This mun-
dane activity in fact requires the simultaneous solu-
tion of several deep problems at various levels. The
agent’s visual system must represent potential target
objects, the target must be selected based on task in-
structions or the agent’s knowledge of the functions
of the represented objects, and the hand (in this case)
must be moved to the target and shaped so as to grip
it in a manner appropriate for its use.

This work will first be framed within the current
literature on the psychological investigation on ac-
tion, vision and language integration, and on the
robotics and computational models of these cognitive
phenomena. We will then present a simulation model
of grasping based on the iCub humanoid platform.
We discuss how this will be extended to perform ex-
periments replicating known psychological data on
micro-a↵ordance e↵ects and action/vision integra-
tion.

1.1 Psychological Studies on Vision, Action

and Language

It is increasingly recognised that cognition should not
be regarded as a set of disembodied processes, but is
strongly determined by the constraints of its bodily
implementation and it being situated in the world
with which it interacts. In the case of visual cogni-
tion this embodied approach has led to an emphasis
on the role of active vision in exploring the world,
and therefore on the integration of vision and action
(see for instance O’Regan and Noe, 2001). There is
certainly accumulating human behavioural evidence
that vision and action form a closely integrated and
highly dynamic system (e.g. Tucker and Ellis, 1998,
2001; Craighero et al., 2002; Fischer and Hoellen,
2004).

One consequence of this integration of the vision
and action systems is that seeing an object, even
when there is no intention to handle it, potentiates
elements of the actions needed to reach and grasp it.
For instance participants who viewed photographs
of common objects in order to decide whether they
were manufactured or organic were facilitated in re-
sponding if the grip needed to make the response
was one that could be used to handle the viewed ob-
ject (Tucker and Ellis, 2001). So, for example, sig-
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nalling that a pea was organic was easier (faster and
more accurate) if a precision grip (using only the
thumb and forefinger) was needed for the response
compared to using a power grip (between the four fin-
gers and palm). Similar object to action compatibil-
ity e↵ects are observed for the hand of reach and the
wrist rotation required to align the hand with an ob-
ject (Tucker and Ellis, 1998; Ellis and Tucker, 2000).
The authors coined the term ‘micro-a↵ordances’ to
describe these potentiated elements of an action.

Visual attention and eye movements are obviously
fundamental components of human exploratory be-
haviour, and implicated in the integration of vision,
action and language. Our eyes are exquisitely sensi-
tive to the combined demands of vision, action and
language processing. We move our eyes to project
objects of interest onto the foveal area of high visual
resolution. When we interact with objects, our eyes
move ahead of the hand to support the on-line con-
trol of grasping (e.g. Bekkering and Neggers, 2002).
Merely seeing objects activates plans for actions di-
rected to them (e.g. Tucker and Ellis, 2001; Fischer
and Dahl, 2007).

1.2 Computational Modelling of Vision,

Action and Language

Researchers from di↵erent fields such as engineering
and cognitive science, to name a few, have greatly
benefited from the use of computational models.
This has resulted in a phletora of computational ap-
proaches, amongst which some are based on cogni-
tive and developmental robotics approaches. Such
approaches provide us with a more integrative vision
of action, language and cognition.

In the cognitive modelling literature, there has
also been some work specifically focused on the in-
tegration of action and vision knowledge in cogni-
tive agents and in connectionist models. For exam-
ple, Arbib and colleagues have developed a neural
model for action learning directly inspired by brain
imaging studies on grasping in primates, and ap-
plied to action imitation learning simulations (Arbib
et al., 2000). Haruno et al. (2001) proposed the Mo-
saic architecture for simulated object manipulation
tasks, demonstrating that the model can generalise
action-object associations depending on the object
shape. Demiris and Simmons (2006) present a com-
putational arctitecture using a hierarchical controller
based on the minimum variance model of movement
control (HAMMER: Hierarchical Attentive Multiple
Models for Execution and Recognition) for imple-
menting biologically plausible human reaching and
grasping movements. Tsiotas et al. (2005) developed
an artificial life model for simulating some of Tucker
and Ellis (2001) findings. They used a simplified 2D
arm model to study the evolutionary learning of ob-

ject micro-a↵ordances.1 In the area of connectionist
modelling, Yoon et al. (2002) have proposed a neu-
ral network model for action and name selection for
objects (NAM: Naming and Action Model) that sup-
ports the role of a direct perception-action route for
action selection. This model uses abstract (localist)
encoding of action, perceptual and semantic infor-
mation, rather than providing a robotic implemen-
tation, but is useful as it focuses on the comparison
of perceptual vs semantic information in action se-
lection.

More recently, Caligiore et al. (2008) developed a
biomimetic neural network constrained by anatom-
ical, physiological and behavioural data in which
an embodied ‘eye-hand’ system was used to inter-
act with objects of varying sizes (i.e. small and
large). Using this model they replicated Tucker and
Ellis (2001) compatibility e↵ect between object size
and the type of grip used in a categorisation task
on whether objects were natural or artefacts. The
modules of this neural network system are directly
inspired by known brain processing mechanism. The
action properties of the agents behaviour are how-
ever limited to a static representation of the action
representing the final grasping configuration.

Models of action and vision integration also pro-
vide a framework to develop models of language
learning based on the symbol grounding approach
(Harnad, 1990; Cangelosi et al., 2005). Numerous
studies have recently focused on the design of lin-
guistic communication between autonomous agents,
such as robots or simulated agents. The agents’
linguistic abilities in these models are strictly de-
pendent on, and grounded in, other behaviours and
skills such as vision and action. Numerous senso-
rimotor, cognitive, neural, social and evolutionary
factors contribute to the emergence and establish-
ment of communication and language. For exam-
ple, in these models there exists an intrinsic link
between the communication symbols (words) used
by the agent and its own cognitive representations
(meanings) of the perceptual and sensorimotor inter-
action with the external world (referents), as denoted
by these symbols. Such a grounded and embodied
approach to language design is consistent with the
psychologically-plausible theories of the grounding of
language (Cangelosi and Riga, 2006).

In such cognitive robotic models, communication
results from the dynamical interaction between the
robot’s physical body, its cognitive system and the
external physical and social environment. Some
studies stress the grounding in action and senso-
rimotor processes, such as Marocco et al.’s (2003)
model of robotic arms and Vogt’s (2001) mobile

1Recall that a micro-a↵ordance is a quality of an object
which is perceivable by an individual and suggests to this in-
dividual a range of possible actions associated with it.
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minimum angle maximum angle
# joint (degrees) (degrees)
1 shoulder pitch -95 90
2 shoulder roll 0 161
3 shoulder yaw -37 100
4 elbow 6 106
5 wrist pronosupination -90 90
6 wrist pitch -90 10
7 wrist yaw -20 40
8 hand finger adduction/abduction -20 30
9 thumb opposition -15 105
10 thumb proximal flexion 0 90
11 thumb distal flexion 0 90
12 index proximal flexion 0 90
13 index distal flexion 0 90
14 middle proximal flexion 0 90
15 middle distal flexion 0 90
16 ring & little flexion 0 115

Figure 1: Simulated robot arm and hand with 16 controlled DoF and their corresponding movement ranges

robots. Other robotic models highlight the ground-
ing through social interaction, such as Steels and Ka-
plan’s (2001) AIBO robots. On the other hand, some
studies are based on simulating adaptive agents.
They model the agent and its environment with a
good degree of detail upon which emergent mean-
ings can be directly constructed. These simulation
models have focused on grounding in perceptual ex-
perience and in cognitive representations and senso-
rimotor interactions (e.g. Cangelosi, 2001).

In the next section we present a preliminary
robotic model of action and vision integration for
a grasping task that is directly inspired by this ex-
perimental literature on embodiment. This model
provides us with a test-bed for the simulation of
the vision-action-language integration processes ob-
served in psychology experiments, and generates fur-
ther insights and prediction on such phenomena.

2. Model

The cognitive robotic model presented here is di-
rectly inspired by recent theories of embodied cog-
nition, in which the vision, action and semantic sys-
tems are linked together, in a dynamic and mutu-
ally interactive manner, within a connectionist ar-
chitecture. We take inspiration from the Caligiore
et al. (2008) model described above and extend it to
consider a more realistic simulation of grasping be-
haviour and its time dynamics. This model proposes
a combination of the epigenetic robotics methodolo-
gies with the “embodied connectionist” modelling
approach. Epigenetic (developmental) robotics is
based on the use of embodied robotic systems that
are situated in a physical and social environment
and are subject to a prolonged epigenetic develop-
mental process for the acquisition of cognitive capa-
bilities (Weng et al., 2001; Lungarella et al., 2003;
Schlesinger et al., 2008). Embodied connectionism
refers to the use of artificial neural networks for the
learning and control of behaviour in cognitive robotic

agents. The integration of robotics and connectionist
methodologies permits the transfer of the principles
and advantages of connectionism and parallel dis-
tributed processing systems into embodied robotic
agents (Cangelosi and Riga, 2006).

2.1 Simulated Robot

The robotic agent used in the simulation experiments
is based on the humanoid iCub robot (Metta et al.,
2008). In particular, the experiments use the re-
cently developed open-source simulator of the iCub
robot (Tikhano↵ et al., 2008). The simulator has
been designed to reproduce, as accurately as pos-
sible, the physics and the dynamics of iCub robot
and its environment. The simulated iCub robot
is composed of multiple rigid bodies connected via
joint structures. It has been constructed collecting
data directly from the robot design specifications in
order to achieve an exact replication (e.g. height,
mass, Degrees of Freedom) of the first iCub proto-
type developed at the Italian Institute of Technology
in Genoa. The environment parameters on gravity,
objects mass, friction and joints are based on known
environment conditions.

The iCub robot is around 105cm high, weighs ap-
proximately 20.3kg and has a total of 53 degrees of
freedom (DoF). These include 12 controlled DoF for
the legs, three controlled DoF for the torso, six for
the head and 32 for the arms. In particular, each
arm is made up of three components (the arm, the
forearm and the hand) where the arm and forearm
include eight DoF and the hand another eight DoF,
where each DoF movement range is constrained with
the respective human DoF movement range (Fig. 1).

The robot’s vision system consists of two cameras
located at the eyes of the robot. The simulated robot
also has touch and force/torque sensors which re-
ceive tactile information and proprioceptive data on
its own body posture. The proprioceptive sensors are
located on the robot’s arm and hand and encode the
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Figure 2: Neural network architecture for the robotic agent in which according to the visual input, the proprioceptive

data and the task instruction an appropriate grasping movement is made

current angles of all 16 DoF of the arm (as listed in
Figure 1). In addition, there are six tactile sensors in
each hand – one on each finger and one on the palm
– which indicate whether that particular body part
is in physical contact with another object.

The simulator has full interaction with the
world/environment. The objects within this world
can be dynamically created, modified and queried
which enables us to train the robotic agent to inter-
act with objects so that it can acquire a sensorimotor
representation of the objects through eye and hand
movements. In learning to act on objects the robots
neural controller will form embodied representations
of those objects and as a consequence future encoun-
ters with these objects will cause them to a↵ord the
associated actions (micro-a↵ordances).

2.2 Neural Network Architecture

A connectionist network is used to learn and guide
the behaviour of the robot and to acquire embodied
representations of objects and actions. The neural
architecture, based on the Jordan recurrent archi-
tecture, has recurrent connections to permit infor-
mation integration and the execution of actions such
as grasping (Marocco et al., 2003). The network is
depicted in Figure 2, and it is made up of four 2D
maps of 10x10 neurons, 16 proprioceptive neurons,
10 internal neurons and 16 motor neurons. Specifi-
cally, the 16 output motor neurons control the DoF
of the robot’s right arm (see Fig. 1) that performs
the grasping task and the 16 proprioceptive neurons
in input encode the current angles of the right arm’s
DoF, which feed into the neural network thus creat-
ing a recursive structure (Fig. 2).

The visual input to the robot’s neural controller

consists of pre-processed information regarding vi-
sual object properties (i.e. shape and size). This
information is processed directly from the physics
simulator (Fig. 3: Real Image) by using three edge-
detection Sobel filters – where each filter is sensi-
tive to either red, green or blue component of the
object’s colour. The result of the Sobel filtering is
an image where only the edges of the objects in vi-
sion are encoded (Fig. 3: Sobel). An assumption in
this model is that the eyes always foveate the target
object. The foveated area of the image is in turn
processed – where the activated edges are encoded
as 1 and everything else as 0 – resulting in a 10x10
2D map encoding the shape and size of the foveated
object (Fig 3: Visual Input), which constitutes the
visual input for the neural network.

As well as being fed into the internal neurons, the
visual input is also fed into the Object map, which
is used to encode the objects’ identity. On the other
hand, the Task map encodes the di↵erent tasks that
can be performed on objects, namely a normal grasp-
ing task or a categorisation task akin to Tucker and
Ellis (2001) psychological experiments. Object and
Task maps in turn feed into the Goal map, which
encodes the information about the current goal of
action depending on the task and object identity.
These three maps are implemented as Kohonen self-
organising maps (SOMs) and are analogous to in-
ferior temporal cortex (IT), medial temporal cortex
(MT) and prefrontal cortex (PFC) in Caligiore et
al.’s (2008) model, where the use of Kohonen maps
for IT and PFC is justified by studies suggesting
that these cortical areas are involved in high-level
visual processing and categorisation (Miller et al.,
2002; Shima et al., 2007). Note that these SOMs
are just an approximation of the relevant cortices
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Figure 3: Visual processing in the robotic simulation.

Real Image is the image taken from the robot’s eyes. The

eyes always foveate on the target object, after which So-

bel filters are applied to the Real Image producing the

Sobel image. The result of the visual processing is the Vi-

sual Input image – a 10x10 2D map of 0s and 1s encoding

the shape and size of the foveated object

in functional terms, and not the real physiological-
anatomic analogues.

2.3 Training

Simulation experiments focus on the training of the
robot to use objects using di↵erent manipulation
modalities (e.g. precision grip vs power grip, respec-
tively, for small objects – “cherries” – and for big
objects – “apples”) and also to be able to replicate
psychological experiments where the objects can be
categorised using di↵erent grips (e.g. precision grip
for artefacts and power grip for natural objects).

There are four objects in the simulation: 2 larger
objects (‘big-ball’ and ‘big-cube’) for power grips;
and 2 smaller objects (‘small-ball’ and ‘small-cube’)
for precision grips. In this model, the round objects
(big and small balls) are viewed as natural objects,
whereas the cubes are viewed as artefacts. The train-
ing data consists of a set of grasping sequences for
each object, which have been normalised in the range
of 0–1 from the movement ranges shown in Figure 1.
Each sequence is made up of 10 time-based steps
where the first step represents the initial arm and
hand position (pre-grasp) whereas the last step rep-
resents the final grasping posture (appropriate grasp
for the target object).

There are two training phases in the model. In
the first training phase the robot learns to appropri-
ately grasp objects, while in the second phase the
robot learns how to categorise objects using power
and precision grips, as seen in psychological experi-
ments. Before the main training begins, the Object,
Task and Goal SOMs are trained individually o↵-
line. The Object SOM is trained to categorise the
four objects where a di↵erent cluster of neurons is
activated for each oject, and the size of the cluster

is dependant on the object size (e.g. large objects
activate a greater cluster of neurons) (see Caligiore
et al., 2008). The Task SOM is trained to activate
two di↵erent patterns of neurons to represent the two
di↵erent tasks in psychological experiments, namely
normal grasp and categorisation task. Finally, the
Goal SOM is trained to represent the current goal,
where there are eight di↵erent clusters of neurons
that can get activated depending on the object and
the task.

During the first training phase, the four objects are
repeatedly presented to the simulated robot, which
in turn tries to learn the micro-a↵ordance-based be-
haviours for each object. At the beginning of each
trial an object is placed at the same position on the
table and the robot foveates the object. The pro-
cessed visual input is then fed into the neural net-
work along with the proprioceptive data encoding
the current position of the robot’s right arm DoF.
The Task SOM in this phase is always activated with
the pattern representing the grasping task. Each
internal neuron performs a weighted summation of
the inputs, which then passes a sigmoid (nonlinear)
activation function. The motor neurons perform a
similar weighted summation of the internal neurons’
outputs and their outputs result in a grasping move-
ment appropriate for the target object. In this learn-
ing phase the network parameters are continuously
adjusted using a back-propagation algorithm until
the robot learns to form appropriate associations be-
tween the object’s shape and the hand shape.

In the second training phase, the robot learns to
categorise objects with di↵erent grips. The train-
ing follows a similar procedure to the one outlined
above, with the main di↵erence being in the way
the Task SOM is activated. In this phase, the Task
SOM instead of always being activated with the pat-
tern representing the grasping task (as was the case
in the first training phase), is first activated with a
new (random) pattern representing the categorisa-
tion tasks, and in the next cycle with the previous
pattern of the grasping task. This enables the robot
to learn suitable grasps to correctly categorise ob-
jects depending on the Object and Task SOMs acti-
vations.

3. Results

A total of five di↵erent grasping sequences were de-
fined for each object – of which four sequences were
used for training the robot and the fifth was used for
testing purposes. The five grasping postures di↵er
by the final position and rotation of the hand with
respect to the object. The learning rate for the back-
propagation algorithm was set to 0.075. For each
training cycle an object and one of its four grasp-
ing sequences was chosen randomly and presented to
the robot. This was repeated 12000 times, where
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both training phases lasted 6000 iterations each.2
After training, the network was tested on both grasp-
ing and categorisation tasks for all five grasping se-
quences – including the fifth (unseen) grasping se-
quence – for each of the four objects in order to estab-
lish whether the robot learned how to grasp and cat-
egorise objects appropriately. The results presented
here are all averages of 12 trained neural networks,
where the first six networks were trained to cate-
gorise natural objects (balls) with a power grip and
artefacts (cubes) with a precision grip and the other
six networks were trained to do the opposite (power
grip for artefacts and precision grip for natural ob-
jects).

Figure 4 shows the root mean squared error
(RMSE) of the network during the training phase.
As expected, at the begining of the training the er-
ror between the motor outputs and the desired tar-
gets (joint positions of the right arm) is high (around
0.3). After roughly 2000 iterations the RMSE drops
to 0.05 and stabilises around this value, indicating
that the simulated robot has been able to success-
fully learn appropriate grasps for the four objects.

One important test in this model of object grasp-
ing and micro-a↵ordances is the comparison of the
congruent (where the categorisation grip is in agree-
ment with the natural grip) and incongruent (where
there is mismatch between the categorisation grip
and the natural grip) conditions. The trained neural
networks were presented each object in turn, where
the desired target depended on the task being per-
formed. The results are depicted in Figure 5, which
shows the average RMSE values of the 12 networks
for congruent and incongruent trials. We assume
that RMSE is analogous to reaction time used in

2Recall that in the first phase the Task SOM is always
activated with the pattern representing the grasping task. In
the second phase this happens only in half of the cases (3000
iterations) and in the other half the Task SOM is activated
with the pattern representing the categorisation task.

 0.045

 0.05

 0.055

 0.06

 0.065

 0.07

precision power

R
M

SE

response

small
big

Figure 5: Compatibility e↵ect in congruent and incon-

gruent trials

psychological experiments done in the Tucker and
Ellis (2001) study. An ANOVA on response times
was performed with two factors: congruency and ob-
ject size, and both factors were statistically signifi-
cant. As can be seen in Figure 5 the results are in
agreement with psychological experiments where re-
action times are faster in congruent than in incongru-
ent trials. In addition, the reaction times for larger
objects were faster than for smaller object, as was
also the case in psychological experiments. This in-
dicates that the robot was able to generalise a grasp-
ing sequence for each task and object from the four
grasping sequences used in training, hence learning
to appropriately grasp and categorise objects based
on their shapes and sizes.

4. Conclusion & Future Work

We have shown how the proposed cognitive robotic
model was able to learn object micro-a↵ordances
and appropriately grasp and categorise an object
depending on its shape and size. Tests on con-
gruent/incongruent tasks also demonstrate that the
robots neural controller uses micro-a↵ordance infor-
mation about the objects replicating the well known
Stimulus-Response Compatibility phenomenon ob-
served in psychology experiments. Future analyses
will investigate the internal representations used by
the network in responses to various task demands
(grasping vs. categorisation), to di↵erent level
of object/grasp congruency and to the interaction
between objects with conflicting micro-a↵ordance.
Analyses of the neural network representations in
controlling behaviour, and of the time-course of pro-
cesses and representation activated by the robot’s
neural controller, will be used to better understand
behaviour observed in human participants and to de-
rive novel predictions about interactions between vi-
sion and action.

One additional extension of this model regards the
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inclusion of linguistic information during training,
such as for the names of objects and actions. This
extended model will permit detailed investigations
of the e↵ects of language on micro-a↵ordance e↵ect
(Tucker and Ellis, 2004).

The main goal of this psychologically-plausible
model for the study of grasping behaviour in hu-
manoid robots, in addition to advancing our under-
standing of vision-action-language integration, will
provide us with a set of cognitively-plausible design
principles for developing vision, action and linguis-
tic capabilities in robots and their use in interactive
cognitive systems and autonomous robotics.

The cognitive robotic platform developed here can
be used as a tool to test feasibility of the vision-
action-language integration mechanisms identified
during experimental studies, in addition to demon-
strating the technological potential in such an ap-
proach. Observation and analyses of the robot’s cog-
nitive and linguistic capabilities will also result in
the production and test of new predictions about
mechanisms integrating vision, action and language.
The replication in a robotic model of the psycho-
logical phenomena observed in experimental studies
will have the advantage of permitting the fine analy-
sis and understanding of the neural and behavioural
processes that contribute to action-vision-language
integration (Cangelosi and Parisi, 2002).
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Abstract

Within the autonomous robotics literature,
bio-inspired models of navigation in organ-
isms (e.g. rats) usually rely on instrumen-
tal conditioning processes based on the learn-
ing of associations between places in the en-
vironment and navigation actions leading to
rewarded goal places. This paper presents a
neural-network model capable of solving nav-
igation tasks on the basis of Pavlovian condi-
tioning processes (‘autoshaping’) which allow
transferring innate approaching behaviours
from biologically salient stimuli (e.g., food) to
neutral stimuli (e.g., a landmark seen from far
away and close to the food). The overall ar-
chitecture and functioning of the model is bi-
ologically constrained on the basis of relevant
neuroscientific anatomical and physiological
knowledge on amygdala, nucleus accumbens,
and ventral tegmental area. The model is
tested with a simulated robotic rat engaged
in autoshaping and devaluation experiments.
The results show that, although the model al-
lows solving only simple navigation tasks, it
produces fast learning and a flexible sensitiv-
ity of behaviour to internal states typical of
Pavlovian processes. The model is also im-
portant for the investigation of adaptive be-
haviour in general as it clarifies the nature of
some Pavlovian core mechanisms which play
a key role in several forms of learning.

1. Introduction

Navigation is a fundamental adaptive behaviour
which allows organisms to displace in space so to
get in contact with resources scattered in the envi-
ronment and use them to increase their survival and
reproduction chances. For this reason, the brain ma-
chinery emerged during evolution to subserve naviga-
tion behaviours is rather sophisticated and based on

multiple systems. Most models of animal navigation
proposed within autonomous robotic literature are
based on instrumental processes (for some classical
reviews, see Trullier et al., 1997; Filliat and Meyer,
2003a,b). Instrumental processes allow organisms
to form associations between stimuli and actions on
the basis of the resulting reinforcing outcomes (Dom-
jan, 2006). Some of the most influential models use
reinforcement-learning algorithms (e.g., based on the
Temporal DiÆerence rule, Sutton and Barto, 1998)
to form, via a long training, associations between
places and the actions directed to achieve rewarded
places. Those of these models which are more biolog-
ically constrained assume that places are represented
in ‘place cells’ of hippocampus (HIP) (O’Keefe et al.,
1998) and that actions are selected and triggered in a
reactive fashion by nucleus accumbens core (NAccC)
(Arleo and Gerstner, 2000), or, alternatively, that
actions are triggered in a proactive fashion based
on planning processes located in prefrontal cortex
(PFC) (Martinet et al., inpr).

The important processes involving complex spatial
elaborations performed by HIP, NAccC and PFC has
led to overlook some processes underlying naviga-
tion behaviours which are simpler but also faster and
more flexible than instrumental ones. In this respect,
a main tenet of the paper is that an important class
of these simpler processes are based on Pavlovian
conditioning mechanisms. Pavlovian conditioning
(Lieberman, 1993) is an experimental paradigm in
which a stereotyped ‘unconditioned response’ (UR),
innately associated with, and triggered by, a biolog-
ically salient ‘unconditioned stimulus’ (US), might
become associated with, and so triggered by (so be-
coming a ‘conditioned response’, CR), an innately
neutral ‘conditioned stimulus’ (CS), if the CS regu-
larly precedes the US. For example, the UR of sali-
vation, innately triggered by the US of the taste or
smell of food, might become associated and triggered
by a CS consisting in the sight of food if the CS is
repeatedly followed by the US.
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Approaching food or conditioned stimuli (e.g., a
light) is a typical UR/CR studied in Pavlovian ex-
periments (in this case called ‘autoshaping’). Au-
toshaping mechanisms allow organisms to approach
(CR) a neutral stimulus (CS) if this has been regu-
larly paired with an appetitive stimulus (US).

Pavlovian mechanisms related to approaching have
a great evolutionary advantage. The approaching be-
haviour is formed by a set of motor routines which
involve a complex rhythmic pattern of muscle activa-
tions which reduce the spatial distance with the tar-
get. The advantage rendered by autoshaping mech-
anisms is that the formation of a fast-learnable and

simple association between an US (e.g., food) and
a CS (e.g., a big landmark close in space to the
food and visible from far away) can allow organ-
isms to rapidly transfer the whole complex target-

approaching behaviour (UR) to the CS.
Pavlovian navigation has also a second important

advantage in terms of flexibility as it can be mod-
ulated by body states. In fact, internal representa-
tions of USs (via the activation of which approaching
responses are triggered) can be directly modulated
by internal states. For example, the satiation for a
particular food (US) can prevent its internal repre-
sentation from being activated by the activation of
a CS associated to it, so stopping the triggering of
costly and inuseful URs associated to it (e.g., saliva-
tion and approaching).

The main contribution of the paper is the pro-
posal of a model which represents a first important
step towards a full and detailed understanding of
Pavlovian-based navigation processes. This not only
has great relevance for neuroscience and psychology,
but also for autonomous robotics for two reasons:
(a) it suggests specific mechanisms for implementing
quickly-learnable and flexible navigation behaviours;
(b) Pavlovian mechanisms play a key role in many
learning processes and so have an importance which
goes well beyond navigation behaviours (see Mirolli
et al., sub).

The rest of the paper is organised as follows. Sec-
tion 2. illustrates the biological constraints of the
model, Section 3. the setup of the simulated experi-
ments, and Section 4. the model in detail. Section 5.
presents the results of the autoshaping and devalua-
tion tests, whereas Section 6. draws the conclusions.

2. Biological Evidence on Pavlovian

Navigation Mechanisms

This section presents biological evidence which on
one side supports the claim that organisms acquire
some kinds of navigation skills based on Pavlovian
mechanisms, and on the other side furnishes the
anatomical and physiological constraints used to de-
sign the architecture and functioning of the model.

A first piece of evidence is that lesions of HIP does
not prevent the acquisition and expression of au-
toshaping behaviours (Parkinson et al., 2000). This
is fundamental as rules out that the spatial compu-
tations performed by HIP underlie such behaviours.

Another important piece of evidence is related to
the basolateral complex of AMG (BLA). BLA is the
main locus where CS-US Pavlovian association pro-
cesses take place (Cardinal et al., 2002a; Knapska
et al., 2007; McDonald, 1998; Pitkänen et al., 2000).
Surprisingly, BLA is not necessary for learning and
expression of autoshaping (Parkinson et al., 2000).

BLA, however, is necessary for the flexible mod-
ulation of Pavlovian mechanisms based on internal
states. An example of this, relevant to this work, is
that it is necessary to allow satiation for one food to
inhibit not only approaching to such food but also
approaching to a CSs associated with it (Blundell
et al., 2003). This without the need of relearning.

BLA is also necessary for the functioning of second

order conditioning, that is conditioning of a neutral
stimulus on the basis of the presentation of another
neutral stimulus previously associated with it (this
can be done ‘in extinction’, i.e. without presenting
the US after the first CS; Cardinal et al., 2002a).
This might be relevant to extend the model in the
future and let it learn to approach a landmark (CS2)
if this is followed by another landmark (CS1) previ-
ously associated with reward (US).

BLA is also capable of triggering phasic dopamine

(DA) bursts via its connections with lateral hypotha-
lamus (LH; Pitkänen et al., 2000). These types of DA
signals are very important for learning.

Another important fact to consider is that the cen-
tral complex of AMG (CEA) is needed for learning
conditioned approach behaviours but not for express-
ing them (Cardinal et al., 2002b). This property
seems related to the capacity of CEA of causing a
population diÆused activation of the ventral tegmen-
tal area (VTA) and a consequent production of tonic

dopamine: this acts as a necessary precondition for
phasic DA to trigger learning.

Tonic DA is also at the basis of vigor of actions,
that is of the mechanisms for which the intensity and
frequency of execution of actions can increase due
to expectation of appetitive stimuli (cf. Niv et al.,
2006).

A further important piece of evidence is that the
ventral part of the striato-cortical system (Kandel
et al., 2000) is needed to learn and express condi-
tioned approach behaviours. In particular, lesions of
the basal-ganglia and cortical components of such
loops, namely respectively the nucleus accumbens
core (NAccC; Cardinal et al., 2002b) and anterior an-
terior cingulate cortex (ACC; Cardinal et al., 2002b,
2003) prevent both learning and expression of condi-
tioned approach.
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3. The Simulated Rat, the Maze, and

the Tasks

The robot used to test the model is a robotic rat
(‘ICEAsim’) developed within the EU funded project
ICEA on the basis of the physics 3D simulator
WebotsTM. The model was written in MatlabTM

(Webots has an interface for Matlab code). The nu-
merical integration of the equations of the model is
performed with the Euler method and an integration
time step of 0.05 (also used for the 3D simulator).
The robotic setup used to test the model is shown in
Figure 1 and it is now briefly described.

The training and test environment is composed by
a grey-walled Y maze (only the two upper arms of
it were used: the lower arm will be used in future
work). Each upper arm contains a diÆerent land-
mark which the rat can see from far away, and a rect-
angular food dispenser, which the rat can see only
from the middle of the arm onward. The two food
dispensers contain food A and food B respectively.
When the rat touches a food dispenser it receives
a rewarding signal corresponding to the ingestion of
the food.

Figure 1: Top: The simulated Y maze and robot. Bot-

tom: The left and right retina images perceived by the

rat while positioned as indicated in the top graph.

The simulated rat is a two-wheel robot equipped
with various sensors. Among these, the tests re-
ported here use two cameras (furnishing a panoramic
300 degrees view) and the whisker sensors. The rat
uses the cameras to detect the landmarks (red and
blue) and the food dispensers (green and yellow).
Suitably tuned pre-processing colour filters allow the

system to perceive stimuli as binary signals. Land-
marks are seen from far away, for example from the
crossing of the Y maze, but only when positioned in
the frontal zone of the rat (within a range of 900).
Also the food dispensers are visible only if within
the frontal zone, but their visibility is limited to po-
sitions within a half-arm distance. The rat is also
endowed with two binary sensors which detect the
ingestion of respectively food A or B, and with two
binary internal sensors respectively encoding satiety
for either food A or B.

The rat also uses the whiskers, activated with one
if bent beyond a certain threshold and zero other-
wise, to detect contacts with obstacles. The whiskers
are used to control a low-level hardwired ‘obstacle
avoidance routine’ which ‘overwrites’ all other ac-
tions and leads the rat away from obstacles.

The actuators of the rat are two motors which can
independently control the speed of the two wheels.
The system controls such speed by selecting one of
three hardwired routines: ‘turn-left’ and ‘turn-right’,
which lead the robot to respectively turn anticlock-
wise or clockwise on the spot, and ‘go-straight’ which
leads the robot to move forward. If none of these rou-
tines is selected and active, the speed of wheels is set
to zero. A further ‘consummatory routine’, mimick-
ing eating, is triggered when the rat is on a dispenser
and perceives the related US.

The rat undergoes three training/testing phases:
1. Pre-training phase. In this phase, the rat is first
trained for 2 mins, divided in trials, in the food-B
maze arm without the landmark and blocked with a
wall at the central end; then it is trained in a similar
condition in the food-A arm. Trials terminate either
after 20 sec or when the rat ingests the food. In this
phase the rat learns to associate the seen foods (CSs)
with the ingested foods (USs).
2. Training phase. This phase lasts 2 mins, divided
in trials as in the first phase, and involves the two
upper arms. In this phase the rat learns to associate
the landmarks (CSs) with the seen foods (CSs) and
the ingested foods (USs).
3. Devaluation phase. This phase is composed of
three sub-phases of 4 mins each: one with both fully-
valued foods, one with the devalued food A, and one
with the devalued food B. Each sub-phase is divided
in trials as in the other two phases. In this phase the
learning coe±cients are set to zero to collect more
controlled data. This phase allows testing if the rat
has a tendency to explore more extensively the maze
arm where the non-devalued food is located.

4. The model

This section uses the following conventions: bold
capital letters (X) represent matrices, bold small let-
ters (x) represent vectors and small letters (x) rep-
resent scalars. The notation [x]+ means that the
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positive part of x is considered, while the notation
[x]° means that the negative part of x is considered.
The function ¡ (x, µ) returns 1 if x > µ, 0 otherwise.
Note that each unit activation is here assumed to
represent the firing rate of a population of neurons
reached by a similar input pattern.

Figure 2 shows the architecture of the model based
on three main components: (a) the AMG: this is re-
sponsible for implementing the stimuli associations
of Pavlovian conditioning; (b) the striatocortical sys-
tem formed by the ventral basal ganglia (VBG: these
are a set of nuclei formed by the NAccC, the subta-
lamic nucleus, STN, and the susbstantia nigra pars
reticulata, SNpr) the dorsomedial thalamus (DM)
and the ACC: this is responsible for selecting the ac-
tions to execute; (c) the dopaminergic system formed
by LH and VTA: DA modulates both the learning
processes and the speed of selection and duration of
execution of actions (the latter is the correspondent
of action vigor in the model, see Section 2.).

Figure 2: The architecture of the model.

With the exception of the units of AMG (see Sec-
tion 4.1), all the units of the model are leaky inte-
grators as described in Amari (1977):
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is the weight of an
aÆerent connection from another unit j.

4.1 The Amygdala, an CS-CR and CS-US

Associator

This section first describes the general functioning
and learning of AMG units and then the specific
functions of BLA and CEA.

BLA and CEA are each formed by six input units
which receive one-to-one input signals from the six
external input units of the model: two encoding vi-
sual conditioned stimuli, two encoding the two seen
foods, and two encoding the taste of ingested food.
Two additional internal input units of the model, re-
spectively encoding the satiation for the two foods,
send strong one-to-one inhibitory signals to the two
units of BLA and CEA encoding the two food tastes.
Another group of units (intercalated nuclei, ITC)
serve as a disinhibitory interface between BLA and
CEA (see Paré et al., 2004)

The units of BLA and CEA (denoted with bla and
cea) are diÆerent from the other units, in particular
each one activates in correspondence to stimuli onset
and then fades away (many single neurons in brain
have this property). For each AMG unit, this onset-
detection function is achieved on the basis of two
leaky integrators, o

in

and o

out

:
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This kind of activation is needed to allow the
internal connections of BLA and CEA to be up-
dated on the basis of a ‘diÆerential Hebb rule’ (Porr
and Wörgötter, 2003; Mannella et al., 2007). This
rule captures the temporal correlation (or ‘apparent
causality’) existing in incoming input patterns. In
particular, if one has two units with two reciprocal
connections and the first unit tends to be activated
within a certain time window before the second unit,
the rule tends to increase the weight of the connec-
tion which goes from the first unit to the second unit,
and at the same time tends to decrease the weight
that goes from the second unit to the first unit. In
detail, the learning rule works as follows. First the
leaky traces of the derivatives of the activation of the
onset units are computed:
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where ∑

tr

is a multiplying factor. Then a diÆerence
in the sign of the traces of the presynaptic and post-
synaptic unit determines the amount of the incre-
ment of the weights:
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where µ

wij is a weight-saturation threshold, da is the
dopamine, and µ

da

is the dopamine level above which
learning takes place.

BLA units have lateral connections. When visual
stimuli units and food-taste units are strengthened
on the basis of Equation 4, the former ones acquire
the ability to activate the output unit in the same
way as done by USs.

BLA output responses consist in triggering, via
LH, the activation of VTA output units: this leads
to a phasic dopaminergic signal underlying learning
(see Section 4.3). A second output reaches NAccC:
this has the function of biasing the selection of ac-
tions taking place within VBG. A last output reaches
CEA, and allows BLA processes to exert control on
the output of CEA.

BLA US units are also reached by internal sig-
nals about satiety. Through these connections the
activity of these units can be modulated by internal
states, for example suppressed by satiation. In this
way, the US can dynamically change its motivational
value. This property is also transferred to CSs if they
have been associated to USs within AMG.

CEA has six input units and one output unit con-
nected to VTA. All internal connections are trained
with the diÆerential Hebb rule mentioned above,
with the exception of those carrying the information
about the USs which are fixed (‘innate’). This learn-
ing process allows the formation of CS-CR associa-
tions (stimulus-response associations).

CEA can cause DA release via a disinhibition of
the internal population of VTA. This mechanism
is able to maintain tonic dopaminergic e≤ux upon
baseline through time. This DA is not su±cient to
trigger learning within NAccC but at the same time
it is necessary to allow the BLA signal to VTA (via
LH) to cause DA-based learning (see Section 4.3).
Moreover, tonic DA acts as a multiplier of signals
from BLA to NAccC, so implementing a ‘vigor’ func-
tion (see Section 2. and 4.2).

CEA receives input not only from external stimuli,
but also from BLA. This allows BLA to have access
to the output of CEA (DA in this case). Moreover,
the internal signals related to satiety modulate the
US input units of CEA similarly to what happens for
BLA.

4.2 The Striatocortical System

The VBG component is a simplified implementa-
tion of the basal ganglia ‘GPR’ model proposed by
Gurney et al. (2001a,b). We implemented a three
channel version of the model consisting of the basal
ganglia ‘direct pathway’ (from NAccC to SNpr) and
‘indirect pathway’ (STN to SNpr; cf. Kandel et al.,
2000). When active, the three channels activate
respectively the ‘turn-left’, ‘go-straight’, and ‘turn-
right’ routines (see Section 3.). As in the GPR
model, the input to NAccC is amplified by DA:
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are respectively a baseline and
a multiplication coe±cient of the amplification ef-
fects of DA on input.

Another important aspect of VBG is that the in-
put signal it receives from BLA is aÆected by noise.
This noise is generated in the form of a random num-
ber, uniformly drawn in [0, 1] with a probability of
0.05 at each step of the simulation, added to each
VBG input signal received by BLA.

The connections from BLA to NAccC are trained
on the basis of an Hebb rule modulated by DA:
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where ¥

bla!naccc

is a learning rate, µ

naccc

is a learn-
ing threshold for the activation of NAccC units, and
µ

bla!naccc

is a threshold for saturating the weights.
Note that in this learning rule the information re-
lated to naccc

j

should be brought to the NAccC units
by ACC-NAccC backward connections not explicitly
simulated in the model.

4.3 The Dopamine System

The dopaminergic activity in the model depends on
the LH-VTA system. VTA is formed by one input
and one output unit. The input unit is activated
by CEA and inhibits the output unit. The output
unit receives also an excitatory input from LH and
produces as output the dopaminergic signals. Fig-
ure 3 shows an example of the overall functioning of
VTA. The first graph of the figure shows the nega-
tive input received by the input unit from CEA. The
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second graph shows the excitatory input received by
the output unit from LH. The last two graphs show
respectively the activation of the input and output
units. It can be seen that the inhibition of the input
unit (caused by CEA) can augment dopaminergic ac-
tivity but never lead it over a certain threshold, e.g.
necessary to trigger learning of the DA target areas.
Similarly, an excitatory signal (from LH) to the out-
put unit is not su±cient to lead DA level over the
threshold when presented alone. This implies that
both disinhibition and excitation are needed for the
DA signal to trigger learning.

inpvta−in
−1
0
1

inpvta−out
−1
0
1

vta−in
0

0.5
1

vta−out
0

0.5
1

Figure 3: An ‘in-vitro’ test on the VTA responses.

5. Results

This section reports the outcome of the tests of the
rat in the three learning/training phases described
in Section 3. During the pre-training phase, the rat
initially randomly explores the maze arm where it
is by triggering sporadic actions under the eÆect of
noise aÆecting NAccC. Motion is rather slow due to
the low levels of DA. Eventually, this behaviour leads
the rat to step on the food dispenser and eat the food
(US). The resulting dopaminergic signal leads CEA
to form associations between the seen-food units and
the output unit triggering the tonic DA in VTA,
and BLA to form associations between the seen-food
units and the taste-food units. Learning of BLA and
CEA leads the system to increase the frequency of se-
lection of actions and the duration of their execution:
overall the vigor of the rat seems increased when the
rat sees the food. Figure 4 shows the activation of
BLA caused by these learning processes. Notice how
the activation of the CS units pre-activates the cor-
responding US units.

(a)

(b)

Figure 4: (a) Example of input stimuli during the pre-

training phase (vertical bars mark diÆerent trials). (b)

Corresponding activation of BLA units.

During the training phase, the rat initially explores
the environment and speeds up its actions when the
food becomes in sight. This leads it to rapidly ap-
proach the food dispenser while the coloured land-
mark of the arm is visible. Within CEA, this causes
the formation of the associations between the units
encoding the seen landmarks and the output unit.
In parallel, BLA forms associations between units
encoding the seen landmarks and units encoding the
sight and the taste of foods. Figure 5 shows the
connection weights formed during the pre-training
and training phases. Notice how the system has
formed positive connection weights from CS units to
US units and negative weighs in the opposite direc-
tion due to the diÆerential Hebb leaning rule.

(a)

(b)

(c)

Figure 5: Connection weights after the pre-training and

training phases (black = positive; white = negative, or

zero for the BLA-NAccC connections). (a) BLA lateral-

connection weights. (b) CEA connection weights. (c)

BLA-NAccC connection weights.

Figure 6 and 7 show how in the devaluation test
the rat exhibits a tendency to move with a higher
frequency and vigor towards the non-devalued food
and the corresponding landmark. Figure 8 shows the
activations of the striatocortical system during the
devaluation tests. Notice how NaccC, STN and ACC
are biased toward the selection of the ‘go straight’
action when no food is satiated, whereas only vision
of landmark A produces such bias when food B is
satiated.

Interestingly, the intercalated neurons revealed im-
portant in this phase as they prevented the CEA
from performing its non-selective eÆects on vigor (the
CSs have access to the CEA output unit without be-
ing aÆected by satiety). Indeed, setting low values
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Figure 6: Number of contacts with the (empty) dis-

pensers during the devaluation test in three conditions:

no devaluation, food B devaluation, food A devaluation.

(a)

(b)

Figure 7: Paths followed by the rat during the test phases

with food B devaluation (a) and food A devaluation (b).

of the inhibition exerted by these neurons on CEA
produced less pronounced devaluation eÆects (data
non reported).

6. Conclusions

This paper presented a bio-constrained model aiming
at furnishing a coherent overall picture of Pavlovian
mechanisms underlying navigation behaviours. The
architecture and functioning of the model were de-
signed by fulfilling a number of biological constrains
related to: (a) the anatomy and Pavlovian associa-
tive processes of amygdala; (b) the anatomy and
action-selection processes of nucleus accumbens; (c)
the processes of hypothalamus and ventral tegmental
controlling dopamine. The test of the model with au-
toshaping and devaluation experiments, run with a
simulated rat, show that the behaviour exhibited by
the model is comparable to that of real rats. These
constraints and results render the model a neurosci-
entific and psychological operational theory furnish-

Figure 8: Activation of the striatocortical system units

with no-devalued foods and food B devaluation.

ing a comprehensive picture of the Pavlovian mech-
anisms underlying navigation behaviours.

We believe the model is also very important for
autonomous robotics for two reasons. The first is
that it starts to investigate in detail how Pavlovian
mechanisms might underly some navigation behav-
iurs. This is important as, contrary to instrumen-
tal mechanisms usually used, Pavlovian mechanisms
render such navigation behaviors (a) fast learnable,
as Pavlovian association mechanisms allow complex
‘approach target’ behavioural routines to be quickly
associated with new targets, and (b) flexibile, as the
triggering of such routines can be dynamically con-
trolled by the internal states of robots. The sec-
ond is that the Pavlovian processes investigated with
the model have a paramount importance for several
other cognitive and learning processes (Mirolli et al.,
sub).

Future work will further refine the model by aim-
ing to account for all the biological constraints and
behavioural evidence reported in Section 2.
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Abstract 

 
A key challenge developing intrinsically motivated 
robots is evaluation of the robots’ emergent behaviour. 
Evaluation techniques for intrinsically motivated robots 
must be open-ended enough to identify any emergent 
behaviours, but specific enough to quantify those 
behaviours in a meaningful way.  This paper describes 
a novel use of point-cloud matrices for detecting cycles 
of affordances in robots’ behaviour. The technique is 
demonstrated by evaluating two motivated 
reinforcement learning algorithms on four Lego 
Mindstorms NXT critter-bots. Results show that the 
evaluation technique can identify changing attention 
focus, periods of exploration and exploitation and 
repetitive, cyclic behaviour. 
 
1. Introduction 
 
Intrinsically motivated robots are characterised by their 
ability to select their own goals. They use an embedded 
computational model of motivation – such as novelty 
(Huang and Weng, 2007), interest (Merrick and 
Huntingon, 2008) or curiosity (Oudeyer et al., 2007) – 
to select salient environmental stimuli on which to 
focus their attention. The capacity for autonomous, 
open-ended goal-selection gives intrinsically motivated 
robots the potential to adapt to unexpected changes in 
their environment. In addition, they can develop novel 
or creative behaviours that were not explicitly 
programmed by engineers. 
 
However, a key challenge developing intrinsically 
motivated robots is the evaluation of a robot’s emergent 
behaviour. Evaluation techniques for intrinsically 
motivated robots must be open-ended enough to 
identify any emergent behaviours, but specific enough 
to quantify those behaviours in a meaningful way. 
Evaluation is difficult for intrinsically motivated robots 
because these robots can select and change their own 
goals. This means that traditional, task-oriented 
evaluation is inappropriate as there is no fixed set of 
‘correct’ tasks to be addressed. 

This paper adapts a technique used to evaluate 
repetitive patterns in human motion for use with robots. 
Point-cloud matrices are used to visualise cycles of 
affordances acted on by a robot. Section 2 begins with 
a brief survey of techniques for evaluating the 
behaviour of intrinsically motivated robots and natural 
systems. Section 3 describes how point-cloud matrices 
and affordances can be used to evaluate robots’ 
behaviour. Section 4 demonstrates the technique by 
evaluating two motivated reinforcement learning 
algorithms on four critter-bots using the Lego 
Mindstorms NXT platform. Results show that the 
evaluation techniques can identify changing attention 
focus, periods of exploration and exploitation and 
repetitive, cyclic behaviour learned by a robot.  
  
2. Evaluating Intrinsically Motivated 

Robots 
 
Various techniques have been used to evaluate 
intrinsically motivated robots. For example, Oudeyer et 
al. (2007), use the idea of ‘affordant’ and ‘non-
affordant’ behaviour for a particular task to evaluate an 
intrinsic motivation system for autonomous mental 
development in a robot. This allows them to evaluate 
the success of their system in terms of the increase in 
affordant behaviours and the decrease in non-
affordance behaviours for a particular task. 
 
Other approaches to the evaluation of intrinsically 
motivated robots include algorithm specific approaches 
(Huang and Weng, 2007), case studies and bifurcation 
diagrams (Merrick and Huntingon, 2008). In contrast, 
this paper presents a general approach in which the 
performance of a robot is characterised in terms of its 
ability to act in structured, cyclic patterns. This allows 
evaluation of the emergent behaviour of a robot, 
independent of a specific task or controlling algorithm.   
 
The importance of cyclic behaviour in natural systems 
such as animals has been identified by biologists 
(Ahlgren and Halberg, 1990; Dunlap et al., 2003). 
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Common examples include the circadian rhythm, 
migratory cycles, and cycles associated with seasons or 
tides. A number of techniques for identifying repetitive 
cyclic patterns in human motion have been proposed 
(Li and Holstein, 2002; Kovar and Gleicher, 2004; 
Forbes and Fiume, 2005; Tang et al., 2008). In this 
paper we adapt the point-cloud technique proposed by 
Tang et al. (2008) to identify patterns in robot motion.  
 
2.1 Point-Cloud Matrices 
 
Tang et al. (2008) use point-cloud matrices to visualise 
posture similarity in motion-capture data, as shown in 
Figure 1. Diagonal patterns represent cycles of repeated 
postures. Cycles can be either continuous or 
distributed. Continuous cycles, represented by bottom-
left to top-right diagonals, repeat a sequence of 
postures at adjacent time periods. Distributed cycles, 
represented by cross patterns, repeat a sequence of 
postures at intermittent time periods.  
 

 
Figure 1. Tang et al. (2008) visualise human motion capture 
data using a point-cloud matrix showing posture similarity. 
Diagonal patterns represent cyclic behaviour. 
 
Tang et al. (2008) use point-cloud matrices to visualise 
posture similarity for human dancers. Because we are 
often interested not only in the posture of a robot, but 
also the actions it performs, this paper proposes an 
alternative technique where affordance similarity rather 
than posture similarity is visualised.  
 
2.2 Affordances 
 
The concept of affordances is generally attributed to 
Gibson (1979) as an approach to understanding visual 
perception in natural systems. His theory is that 
organisms perceive their environment, or objects in 
their environment, in terms of the opportunities those 
objects provide for the organism to act. Thus 
affordances capture both the state of an environment 
and the actions available to an organism in that state. 
 

While there is no universal definition or notation for 
affordances in robotics, the concept has been 
considered as an approach to a range of robotic 
problems (Rome et al., 2008a; Rome et al., 2008b). 
These include tool-use (Stoytchev, 2005), interaction 
(Hafner and Kaplan, 2008), machine vision (Paletta and 
Fritz, 2008; Modayil and Kuipers, 2008) and 
navigation (Modayil and Kuipers, 2008; Hertzberg et 
al., 2008). This paper extends existing work with 
affordances in robotics to the challenge of evaluating 
the behaviour of intrinsically motivated robots. 
 
3. Cyclic Evaluation of Robot 

Behaviour using Affordances and 
Point-Cloud Matrices 

 
Affordances can be thought of as mappings or 
relationships between some aspect of a robot’s 
environment – such as an object (Stoytchev, 2005; 
Modayil and Kuipers, 2008) or another agent (Hafner 
and Kaplan, 2008) and the actions a robot can perform.  
This paper focuses on the relationship between the 
actions a robot can perform, its physical structure and 
its external environment. The total environment of a 
robot is considered to comprise data describing both its 
internal and external state. For example, a Lego robot 
such as the one shown in Figure 3(b) may be described 
by the internal state of its motor (on/off, power level 
etc.) and by the state of its external environment 
detected by its colour sensor (red level, green level, 
blue level etc.). More formally, a robot’s state S(t) at 
time t is described by its internal state SI(t) and its 
external state SE(t):   

S(t) = SI(t) + SE(t) 

An attribute-based representation S = (s1, s2, s3, …) is 
required for application of the technique in this paper. 
The set A of actions afforded by a state S at time t is: 

F (S(t)) = A 

This notation implies that actions afforded by a state 
are determined by both the state itself and the time at 
which the state occurs.   
 
While a robot may perceive, or learn to perceive, a 
number of affordances in any state, its emergent 
behaviour is defined by the affordance it chooses to act 
on or execute at each time-step. We denote the 
affordance executed at time t by: 

X(t) = {S, A} 

where A is a numeric action identifier. 
 
The point-cloud visualization is constructed by 
computing the Euclidean distance dist(X(t), X(t�)) 
between pairs of affordances at all times t and t�.  The 
intensity of a pixel (t, t�) on the point-cloud diagram is 
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determined by dist(X(t), X(t�)). A darker colour indicates 
more similar affordances.  
 
Because small robots such as Lego Mindstorms tend to 
move faster than humans, the point-cloud visualisations 
tend to be denser and have various different 
characteristic patterns, in addition to those seen in the 
human motion plots. A number of important 
characteristic patterns are identified in the sample 
diagram in Figure 2. Their meanings are discussed in 
the following sections. 
 

 
Figure 2. Characteristic patterns on point-cloud diagrams of 
robotic motion. See text for detailed description. 
 
3.1 Cyclic Behaviour in Robots 
 
In Figure 2, the dark triangles of parallel diagonals in 
the highlighted regions R1 and R3 are cycles of 
affordances. The distance L between diagonals within a 
triangle indicates the cycle length. The length D of the 
side of a triangle indicates the cycle duration. Duration 
divided by cycle length gives the number of repetitions 
of a cycle. R1 shows a distributed cycle while R3 shows 
a continuous cycle. 
 
Continuous Cycles 
 
Continuous cycles repeat the same sequence of 
affordances at adjacent time periods. For example: 

X1, X2, X3, X1, X2, X3, X1, X2, X3, X1, X2, X3 … 

Continuous cycles appear as parallel diagonals on a 
point-cloud matrix, such as that shown in R3. 
 
Distributed Cycles 
 
Distributed cycles repeat two or more sequence of 
affordances at intermittent time periods. The following 
example interleaves two sequences:  

X1, X2, X3, X3, X2, X1 , X1, X2, X3, X3, X2, X1  … 

Distributed cycles appear as cross patterns on a point-
cloud matrix, such as that shown in R1. 
 
3.2 Exploration versus Exploitation 
 
Intrinsically motivated systems, both natural and 
artificial, must exhibit periods of both explorative and 
exploitative behaviour. Exploration is required to find 
new, motivating things to learn about. Exploitation is 
required to carry out learned behaviours. In Figure 2, 
the structured patterns in regions R1 and R3 indicate that 
the robot is exploiting a learned cycle. In contrast, the 
unstructured, random pattern in R2 indicates that the 
robot is exploring to find something new to learn about.  
 
3.3 Attention Focus  
 
As a robot explores, its focus of attention shifts. The 
robot may focus on exploiting entirely new behaviours 
or return its focus to a previous behaviour. The colour 
of the rectangular regions linking dark triangles can be 
used to identify these different types of shifts in 
attention focus. For example, the light rectangular 
region R4 in Figure 2 indicates that the affordances in 
R1 are generally dissimilar to those in R3. If R4 were 
dark in colour it would indicate that the affordances in 
R1 and R3 were similar.  
 
4. Demonstration 
 
This section demonstrates the evaluation technique by 
evaluating two motivated reinforcement learning 
(MRL) algorithms on four Lego Mindstorms NXT 
critter-bots, shown in Figure 3.  
 

 

 
Figure 3. Four critter-bots: (a) a snail with a single motor; (b) 
a bee with a motor and colour sensor; (c) a cricket with a 
motor and ultrasonic sensor; (d) an ant with a motor and 
accelerometer. 
 
The first algorithm, called MRL, is a table-based 
approach (Merrick and Maher, 2009). The second 
algorithm, called SART-MRL uses a function 
approximation technique based on simplified adaptive 
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R4 
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R2 
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resonance theory (SART) networks (Baraldi and 
Alpaydin, 1998) to generalise over the robot’s state 
space. It is hypothesised that the latter approach will be 
able to learn more effectively and exhibit more 
structured behaviour on the robots, because of its 
ability to generalise over the noisy state space of the 
robots. The evaluation technique should thus reflect 
this hypothesis by revealing the presence of structured 
behaviour cycles by the robots using SART-MRL.  
 
The two algorithms – MRL and SART-MRL – were 
each run for 1,200 time-steps (approximately six 
minutes) on each critter-bot. The following paragraphs 
describe the state and action spaces of each robot and 
some of the emergent behaviours with reference to 
point-cloud diagrams for each run.  
 
4.1  The Snail 
 
The first critter-bot, shown in Figure 3(a), is a snail 
with a single motor controlling the height of its 
antennae. The snail can sense the rotation of the motor 
from its built-in tachometer, and whether the motor is 
moving or not. The tachometer reading is an angle 
between –360o and 360o from the initial position of the 
motor. The movement reading is enumerated such that 
0 means the motor is stopped, 200 means the motor is 
moving forwards and 100 means it is moving 
backwards.  
 
Every state encountered by the snail affords three 
actions: A1 – move the motor forward at a fixed speed; 
A2 – move the motor backwards at a fixed speed; A3 – 
stop the motor. The control algorithms respond to an 
intrinsic motivation function to learn which actions to 
select in each state. 
 
Figure 4 visualises the behaviour of the snails using 
each algorithm. Figure 4(a) shows the MRL algorithm 
and Figure 4(b) the SART-MRL algorithm. The white 
rectangular regions in Figure 4(a) indicate that this 
robot is focusing attention on different affordances at 
different times. Inspection of the log file for this critter-
bot shows that it is focusing on affordances in states 
with positive tachometer readings until approximately t 
= 550, and states with negative tachometer readings 
from t = 550-850. However, while some ability to focus 
attention is evident in the snail using MRL, zooming in 
on the darker triangular region (Figure 5) reveals an 
absence of diagonals. This indicates that structured, 
cyclic behaviour is not occurring. Rather the robot is 
continually exploring in an effort to find a region of the 
environment in which it can learn. 
 
In contrast, zooming in on some of the dark triangles 
for the snail using SART-MRL shows a number of 
different diagonal patterns. Figure 6 shows two such 
patterns. The first pattern in R1 is a continuous cycle of 
length L=5 and duration D=30. Inspection of the log 

file for this robot shows that the cycle is repeating 
actions: A1 A1 A2 A3 A2 8 This corresponds to the snail 
raising its antennae twice then lowering them twice. 
The second pattern in R2 has L=2 and D=49 and repeats 
actions: A1 A2 This corresponds to the snail raising its 
antennae once then lowering them once. Periods of 
exploration are visible before R1, between the 
exploitative behaviour in R1 and R2 and after R2.  

 
Figure 4. Point cloud visualisations for the snails using (a) 
MRL and (b) SART-MRL  

 
Figure 5. Zoomed region of Figure 4(a). No structured 
behaviour cycles (dark diagonals) are evident. 

(a) 

(b) 
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Figure 6. Zoomed region of Figure 4(b). Two structured 
behaviour cycles are evident as diagonal patterns in regions 
R1 and R2. Explorative behaviour is evident before, between 
and after these regions. 
 
One of the weaknesses of using point-cloud diagrams 
to analyse robots is that only short time periods can 
reasonably be displayed on a screen or page. This is 
addressed in this paper by zooming in on regions of 
interest. One direction for future work is automated 
analysis of the point-cloud diagrams to identify such 
regions of interest and to generate statistical data about 
the long-term characteristic behaviour of the robot. 
This is discussed further in Section 5. 
 
4.2  The Bee 
 
The second critter-bot, shown in Figure 3(b), is a bee 
with a motor and colour sensor. The motor allows the 
bee to turn its colour sensor ‘head’ through 45o to both 
the left and right. The bee can sense the rotation of the 
motor and whether the motor is moving or not. The 
colour sensor provides data describing red, blue and 
green intensities of the critter’s environment in the 
direction the colour sensor is pointing. These readings 
range between 0 and 255. The bee was placed between 
two colour panels, one red and the other green.  
 
As for the snail, every state encountered by the bee 
affords three actions: A1 – move the motor forward at a 
fixed speed; A2 – move the motor backwards at a fixed 
speed; A3 – stop the motor. 
 
Figure 7 shows the point-cloud diagrams for the bees. 
As with the snail using MRL, Figure 7(a) again shows 
the characteristic patterns of shifting attention focus. 
Also like the snail, however, this plot shows little 
structured, cyclic behaviour emerging in the bee using 
MRL. This is apparent from the light overall colour of 
the point-cloud diagram, which indicates fewer 
matching or similar affordances were executed. The 
reason for the reduction in emergent structured 
behaviour is the bee’s colour sensor. The colour sensor 

returns particularly noisy readings depending on the 
distance of the robot to the coloured object being 
sensed and other factors such as ambient light.  
 
The much darker triangles in Figure 7(b) indicate that 
some structured behaviour is occurring in the bee 
running SART-MRL. Figure 8 zooms in on two of 
these triangles, which show clear diagonal patterns. 
The first in R1 represents a distributed cycle in which 
the bee repeatedly turns its head between the red panel 
and the neutral region between the panels. This cycle 
has L=6 and D=26 and repeats actions: A3 A1 A2 A1 A3 
A2 … This represents the bee experimenting with its 
colour sensor as it alternates between high and low red 
intensity readings.  
 
Between R1 and R2 is a period of exploration as the 
robot seeks different motivating stimuli. The mid-range 
grey colour of the linking square region indicates that 
some of the affordances in R2 are similar to those in R1.   
 
The cycle in R2 is a continuous cycle in which the bee 
is experimenting with its motor in the neutral space 
between the colour panels. In this space the red and 
green intensities are both low or zero. This cycle has 
length L=2, duration D=30 and repeats actions: A1 A2. 
 

 
Figure 7. Point cloud visualisations for the bees using (a) 
MRL and (b) SART-MRL 

(a) 

(b) 

R1 

R2 
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Figure 8. Zoomed region of Figure 7(b). Two periods of 
exploitation are evident, separated by exploration. 
 
4.3  The Cricket 
 
Figure 3(c) shows the third critter-bot, a cricket, with a 
motor and ultrasonic (distance) sensor. As with the bee, 
the motor allows the cricket to turn its ultrasonic sensor 
‘head’ through 45o to both the left and right. The cricket 
can sense the rotation of the motor and whether the 
motor is moving or not. The ultrasonic sensor provides 
eight ping values describing the distance of any object 
in the direction the ultrasonic sensor is pointing. The 
cricket was placed in a corner such that it was further 
from one wall than from the other.  
 
Once again, every state encountered by the cricket 
affords three actions: A1 – move the motor forward at a 
fixed speed; A2 – move the motor backwards at a fixed 
speed; A3 – stop the motor. 
 
Figure 9 shows the point-cloud diagrams for the two 
crickets. Once again, the cricket using MRL (Figure 
9(a)) shows little structured behaviour. This is evident 
from the light overall colour of the diagram. In 
addition, there is no clear shift in attention focus over 
the course of the cricket’s life. This is indicated by the 
absence of light coloured rectangular regions or darker 
triangular regions.  
 
In contrast to Figure 9(a), the point-cloud diagram for 
the cricket using SART-MRL (Figure 9(b)) does have 
the characteristics of shifting attention focus, with a 
number of light-coloured square regions evident. In 
addition, zooming in on dark triangular regions, such as 
that in Figure 10, shows the characteristic diagonal 
patterns of structured behaviour cycles. Figure 10 
shows a continuous cycle with L=3 and D=153, using 
actions: A1 A2 A3 …This represents the cricket 
experimenting with its motor settings. Around t=590 
the robot begins to explore once more. 

 
Figure 9. Point cloud visualisations for the crickets using (a) 
MRL and (b) SART-MRL  
 

 
Figure 10. Zoomed region of Figure 9(b). One cycle is 
evident, followed by exploration from t=590. 
 
4.4  The Ant 
 
Finally, the fourth critter-bot in Figure 3(d) is an ant 
with a motor and accelerometer. The motor moves the 
ant’s legs, which can grip the surface it is on and propel 

(b) 

(a) 

R1 

R2 
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the robot forwards or backwards. The ant can sense 
whether the motor is moving or not. In addition it can 
sense six values from the accelerometer. Three of these 
describe its acceleration in three dimensions. These 
values range between 0 and 981. The other three values 
describe the bot’s tilt from the horizontal in the same 
dimensions. These values range from 0 to 254. Every 
state encountered by the ant affords three actions: A1 – 
move the motor forward at a fixed speed; A2 – move 
the motor backwards at a fixed speed; A3 – stop the 
motor. 
 
Figure 11 shows the point-cloud diagrams for the ants 
using MRL and SART-MRL. This is the noisiest of the 
applications as accelerometer readings are affected by 
the rocking motion of the ant as it moves. This is 
influenced by gravity and, to a lesser extent, the wires 
attaching the robot to the intelligent brick. Like the 
cricket using MRL, Figure 11(a) shows that the ant 
using MRL exhibits little or no structured behaviour 
cycles and has little change in attention focus. This is 
evidenced by the light, even colours on the point-cloud 
diagram.  
 

 
Figure 11. Point cloud visualisations for the ants using (a) 
MRL and (b) SART-MRL 
 
 

Figure 11(b) for the ant using SART-MRL also shows 
relatively mid-range greys, although more triangle 
patterns are evident in the diagram. Zooming in on 
parts of the plot, such as in Figure 12, shows that 
structured behaviour is evident, but the characteristic 
diagonal patterns are much noisier. This mirrors the 
fact that the state space for this robot is also much 
noisier. Figure 12 in fact shows a ‘walking’ behaviour 
learned by the ant. The walk was somewhat jerky, with 
the ant learning to combine a sequence of ‘move-
forward’ and ‘stop-motor’ actions. Despite this, the 
structured behaviour was evident both visually when 
the robot was learning and in the point-cloud diagram. 
One of the strengths of the point-cloud visualisations is 
that they can reveal quite noisy, yet still structured, 
behaviour that would be difficult to identify by 
analysing the data numerically. 
 

 
Figure 12. Zoomed region of Figure 11(b). A noisy yet still 
structured behaviour cycle is evident. This behaviour cycle 
was the robot ‘walking’.  
 
5. Conclusion and Future Work 
 
This paper has presented a novel use of point-cloud 
matrices and affordances for evaluating intrinsically 
motivated robots. A demonstration was presented of the 
evaluation model on two motivated reinforcement 
learning approaches on four critter-bots using the Lego 
Mindstorms NXT platform. Results show that the 
evaluation technique can distinguish: 

� Changing attention focus by a robot – visible 
as light coloured, rectangular linking regions;  

� Periods of exploration – visible as random 
patterns; 

� Periods of exploitative cyclic behaviour – 
visible as dark, triangular patterns of diagonals.  

In addition the length and duration of cycles can be 
computed from the diagrams. These results 
qualitatively confirmed the hypothesis that the SART-
MRL control algorithm would exhibit more structured 

(a) 

(b) 
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behaviour and greater ability to focus attention than the 
MRL control algorithm.  
 
While the model in this paper does not seek to evaluate 
the ‘intelligence’, ‘usefulness’ or ‘correctness’ of a 
robot’s behaviour, it provides an approach that can be 
used in conjunction with domain specific case studies 
or other metrics to identify the emergence of structured, 
cyclic patterns characteristic of learning. 
 
The next phase of this work will focus on developing 
an automated, numerical analysis of the point-cloud 
diagrams to permit a quantitative evaluation of the 
behaviour of a robot. This will complement the 
visualisations to assist with identifying regions of 
interest and provide a way to compare the behaviour of 
different robots numerically. The numerical analysis 
might include automatically identifying properties such 
as the number, length and duration of behaviour cycles. 
This work will further permit the design and analysis of 
more complex motivated robots running for longer time 
periods in complex environments. 
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Abstract

There is a long standing hypoth-
esis in Developmental Psychology
that children use statistical infor-
mation to segment acoustic speech
streams into words. Additionally,
several experiments have demon-
strated that infants are able to
find word breaks using distribu-
tional cues. In this paper we pro-
pose an algorithm for the unsuper-
vised segmentation of audio speech,
based on the Voting Experts (VE)
algorithm. We show that this al-
gorithm can reproduce results ob-
tained from segmentation experi-
ments performed with 8-month-old
infants.

1. Introduction

Spoken human language contains no analogue to
the spaces placed between written words. The
pauses that do exist in audio speech appear between
phrases, when the speaker takes a breath, or when
the airflow is stopped in the pronunciation of cer-
tain consonants. The sounds that are separated by
these pauses are rarely composed of a single word,
and there are no universal markers to indicate where
those single words might be (Klatt, 1979). However,
when we hear our native language, we hear discrete
words. We unconsciously break the stream into its
constituents, rendering it comprehensible. This is
possible because we know the language, and are fa-
miliar with the large lexicon of words we might ex-
pect to hear. When confronted with a novel word,
we need only segment the words before and after it
to identify it as a brand new token.

Infants, however, do not share this luxury. They
must learn to segment their mother’s tongue from
scratch. Every word is a novel word, and their lex-
icon starts o� empty. Fortunately, human beings
have an apparently innate ability to use statistical in-
formation to segment continuous spoken speech into

words, and that ability is present in infants as young
as 8 months old. Apparently, they can perform this
task without any feedback or other salient cues as
to the locations of word breaks (Sa�ran et al., 1996)
(Sa�ran et al., 1999).

An accurate characterization of this ability would
presumably be theoretically and practically advan-
tageous. Along those lines, this paper proposes a
method for the unsupervised segmentation of spo-
ken speech, based on an algorithm designed to seg-
ment discrete time series into meaningful episodes.
We suggest that our model may capture part of the
human process of speech segmentation. To substan-
tiate our claim, we replicate an experiment that was
performed on 8-month-old infants, and show that our
algorithm performs similarly to the children.

2. Related Work

There are two main fields that are related to this
topic. The first is the study of the speech segmenta-
tion methods that are used by infants. This consti-
tutes a very broad area of research, with many sub-
fields. This work is most related to the study of sta-
tistical learning in developmental psychology, which
focuses on infants’ ability to use statistical cues to
segment language streams. These studies are the di-
rect inspiration for this line of research, but they
suggest no practical algorithm for replicating the re-
sults they have observed. The second related field of
research pertains to algorithms for the segmentation
of time series data. These studies su�er from the op-
posite problem. That is, there are many strategies
by which to segment data, but not many that serve
as a plausible model of infant segmentation.

2.1 Statistical Learning

The idea that infants use statistical cues to segment
speech streams is very old (Harris, 1955). Specifi-
cally, the canonical theory is that they use the transi-
tional probabilities between syllables as an indicator
of word boundaries. Suppose that � and ⇥ are sylla-
bles in some language. Then the transitional prob-
ability TP (� ⇥ ⇥) is the probability that ⇥ follows
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� when � appears in the speech stream. It stands
to reason that syllables that appear together inside
of a word would have a higher transitional probabil-
ity than those that do not. Therefore, the argument
goes, the transitional probabilities between syllables
inside of words should be high, but the TP between
syllables that cross a word boundary should be low.
Hence, a child might easily segment a sequence of
syllables by noting whenever the transitional proba-
bility dips down low.

This is precisely the strategy suggested in
a series of experiments performed by Sa�ran
et. al. (Sa�ran et al., 1996) (Sa�ran et al., 1997)
(Sa�ran et al., 1999). The first of these experiments
demonstrated that 8-month-old infants can, in fact,
segment words based solely on statistical informa-
tion. The children were played an artificially gener-
ated acoustic stream composed of the words tupiro,
golabu, bidaku and padoti repeated in random order.
After two minutes they were played a second stream
consisting of a single word repeated over and over.
Half of the time the word was from the original lan-
guage, and the other half of the time it was a novel
word, generated from the same syllables. The stimu-
lus streams had no audible breaks between the words,
no variation in pitch or meter, and no other cues as to
the word breaks. The only clue was the transitional
probability between the syllables. Inside of words it
was always 100%, but between words it dropped to
25%. The stimulus stream was constructed specif-
ically to be segmentable by the TP strategy. And
the amazing result was that, after only two minutes,
the infants were able to tell the novel words from the
old.

The results of these experiments were taken as ev-
idence that human infants really do pay attention
to the transitional probabilities between syllables,
and that they use them to segment audio speech.
However, that’s not really what these experiments
showed. They showed that infants can segment au-
dio speech using some kind of statistical model, and
that it is powerful enough to work on the stimulus
stream they were presented. Dips in inter-syllable
transition probability were the simplest cue that they
could have used to segment the sequence, but virtu-
ally any sophisticated model should have picked up
this very simple pattern. And there is significant ev-
idence to suggest that infants, in fact, are not using
TP s to do this.

Most dramatically, multiple studies have showed
that the direct application of the TP strategy
performs poorly when used to segment phonetic
transcripts of speech (Cairns and Shillcock, 1997)
(Gambell and Yang, 2008). This exposes several of
the weaknesses of the traditional statistical learning
approach. First of all, a very high percentage of com-
mon words contain only one syllable. It is therefore

impossible for there to be a TP valley on both sides
of the word. Moreover, the original conclusion that
word-internal transitions should have higher proba-
bilities than word-external ones is not always true in
practice. Often, the last syllable of one word and the
first syllable of the next happen to form a perfectly
common pair. Similarly, many words contain sylla-
ble combinations that are, in general, rare (perhaps
only appearing in a handful of words). The di�erence
in single-syllable TP inside of and between words is
more of a trend than a reliable rule.

2.2 Segmentation Algorithms

Most of the algorithms mentioned in this section are
used to segment discrete token sequences (i.e., they
segment text - or text based phonemic transcripts of
speech). This paper describes an algorithm that runs
on real audio, and is able to perform the unsuper-
vised segmentation of individual words from acoustic
speech streams. So, in some sense, we are compar-
ing apples and oranges. However, this previous work
is certainly related, since it is also inspired by de-
velopmental psychology, and intends to accomplish
roughly the same task.

There exist a wide variety of algorithms capable
of segmenting discrete time series into meaningful
“chunks.” For instance, compression algorithms that
find minimum description lengths can often be co-
erced into segmentation by using whatever encoding
they perform (Nevill-Manning and Witten, 1997)
(Cohen et al., 2007). Several studies have attempted
to train Neural Nets to predict the subsequent
phoneme given the last few, and induce breaks
whenever the prediction is uncertain (Elman, 1990)
(Cairns and Shillcock, 1997). Gambell and Yang
suggested a method of segmenting speech by as-
suming that every word contains a single stressed
syllable (Gambell and Yang, 2008). They reported
very good results on the CHILDES dataset, tran-
scribed to phonemes and then concatenated into syl-
lables. Michael Brent published a thorough sur-
vey of many di�erent strategies for attacking this
problem (Brent, 1999b). In fact, his own algorithm
has set the bar for the unsupervised segmentation
of phonemic transcripts of infant directed speech
(Brent, 1999a). It incrementally builds a lexicon
and induces maximum likelihood parses in short
phrases. Using this strategy, Brent was able to seg-
ment phonemic transcripts of child directed speech
with precision and recall above 80%. This remains
the best performing algorithm on this type of data.

However, Brent’s algorithm pays no attention to
statistical regularities in phoneme sequences, and
typically builds very large lexicons with many wrong
words. For instance, this algorithm would be inca-
pable of segmenting the stimulus streams used in the
statistical learning experiments, since they contained
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no phrase boundaries. This demonstrates that, while
some kind of bootstrapping, lexicon-based segmenta-
tion method might be useful, it does not completely
model the human system. Perhaps infants use a sim-
ilar process as part of their strategy, but they are also
sensitive to statistical cues.

Recently the ACORNS project has been cre-
ated to investigate human language acquisition
(Boves et al., 2007). This research is unique, in that
it attempts to learn the grounded meaning of words
in an unsupervised way. However, the automatic seg-
mentation of speech into words is a secondary goal
to the extraction of semantic meaning. These two
strategies are certainly complimentary, and children
must perform both of these tasks in order to acquire
language. In this paper, we do not address word
learning, but instead focus entirely on unsupervised
segmentation. Our goal is to introduce a unique un-
supervised method for segmenting continuous data
streams, to apply the method to speech, and suggest
that such a model might characterize the statistical
segmentation abilities of human infants.

2.3 Voting Experts

Voting Experts (VE) is an algorithm for the unsuper-
vised segmentation of discrete time series into mean-
ingful episodes (Cohen et al., 2007). It is a purely
distributional algorithm, in that it relies solely on
statistics calculated from the time series itself. VE

has demonstrated an ability to accurately segment
text, phonetic transcripts, vertical pixel columns
scanned from text, discrete robot sensor data and
even a text transcript of the acoustic streams
used in this paper (Miller and Stoytchev, 2008a)
(Cohen et al., 2007). It’s based on the hypothesis
that natural breaks in a sequence are usually ac-
companied by two information theoretic signatures.
These are low internal entropy of chunks, and high
boundary entropy between chunks.

In this context, the internal entropy of a chunk is
simply its Shannon information, or the negative log
of its probability (Shannon, 1951). So the higher the
probability of a chunk, the lower its internal entropy.
We can calculate the probability of a short sequence
of tokens by observing how often that sequence ap-
pears in a longer time series. So, essentially, this
marker picks out short sequences of tokens that ap-
pear often.

Boundary entropy is the uncertainty at the bound-
ary of a chunk. Given a sequence of tokens, the
boundary entropy is the expected information gain
of being told the next token in the time series. This
is calculated as

HB(c) = �
Pm

h=1 P (h | c)log(P (h | c))

where c is this given sequence of tokens, P (h | c)
is the conditional probability of symbol h following

c, and m is the number of tokens in the alphabet.
Well formed chunks are groups of tokens that are
found together in many di�erent circumstances, so
they are somewhat unrelated to the surrounding el-
ements. If the boundary entropy of a subsequence is
high it means that there is no particular token that
is very likely to follow that subsequence. In other
words, the next token is unpredictable.

In order to segment a discrete time series, VE pre-
processes the series to build an n-gram trie, which
represents all its subsequences of length less than or
equal to n. It then passes a sliding window of length
n over the series. At each window location, two “ex-
perts” use the trie to vote on how they would break
the contents of the window. One expert votes to min-
imize the internal entropy of the induced chunks, and
the other votes to maximize the entropy at the break.
After all the votes have been cast, the sequence is
broken at the “peaks” - locations that received more
votes than their neighbors, so long as the total votes
at the location exceeded a threshold Vt. For all of
our experiments we chose n = 7, and we varied Vt

over a range of values. The e�ect of this variation
will be discussed later, and evident in the results of
our experiments. The choice of n roughly approxi-
mates the expected length of an individual “chunk.”
This algorithm runs in linear time with respect to the
length of the sequence, and can therefore be used to
segment very long sequences. For further technical
details of VE, or a more in-depth discussion of the
roles of Vt and n, see (Cohen et al., 2007).

This model bears a strong resemblance to the sta-
tistical learning approach mentioned before. If the
conditional probability between each syllable within
a word is high, then by definition the internal en-
tropy of the word is low. But instead of evaluating
each transitional probability in isolation, VE looks
for short sequences of tokens where all of the TP s
are high. Similarly, the boundary entropy of a se-
quence is high precisely when there is no particular
token that is very likely to come next. However,
instead of focusing on the transition probability be-
tween two syllables that happened to be adjacent,
VE looks at whether the TP is expected to be low.
This is an important di�erence, and it solves one of
the major problems with the transitional probability
approach. When the last syllable of one word and
the first syllable of the next happen to form a likely
pair, the TP based approach fails. But VE isn’t af-
fected when the TP at the word boundary is high,
as long as the next token is unpredictable based on
several previous tokens. This extra power is a�orded
by the use of the more sophisticated entropy metrics.
Moreover, the model should still be extremely sen-
sitive to the transitional probability cues, since the
entropy cues must be present wherever the TP cues
are.
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In this paper we extend VE to work on audio data.
We then use this algorithm to reproduce Sa�ran et

al.’s original experiments. VE might not be the best
possible unsupervised distributional segmentation al-
gorithm, but it is certainly a powerful one. Addi-
tionally, the complexity of its metrics seems close
to the horizon of biological plausibility. It is not
unrealistic to think that humans naturally pick out
commonly recurring sequences of sounds, and tend
to place breaks at moments of unpredictability. Ac-
cordingly, we suggest that VE is a strong candidate
for a usable model of the human distributional seg-
mentation mechanism.

3. Datasets

We obtained two stimulus streams from the
original infant speech segmentation experiments
(Sa�ran et al., 1996). Each audio stream is about
60 seconds long and contains roughly 90 “words.”
The first stream (stream A) was composed, as de-
scribed above, of randomly ordered instances of the
four words tupiro, golabu, bidaku and padoti. The
second stream (stream B) was composed of random
instances of the words tilado, dapiku, pagotu and
burobi. The second language is composed of the same
syllables as the first, but arranged so that the con-
catenation of words in either language cannot pro-
duce a word from the other. So in some sense these
two audio streams are disjoint.

In the original experiment, the infants were played
a stream created in the same way as stream A, and
then tested on a single word repeated over and over.
This method is useful when evaluating infants be-
cause it is simple. However, we can perform a more
thorough evaluation of our model since it produces
explicit break locations. We found it more informa-
tive to test our model by training it on one stimulus
stream and then testing it on the other. This pro-
vides more information on the performance of the
model, but the results can clearly be compared to
those of the infant experiments.

In order to evaluate the segmentations induced by
our algorithm, we manually recorded the timestamps
of all of the word boundaries in the two stimulus
streams. It is impossible for this process to be ab-
solutely precise, since spoken audio is not actually
composed of distinct phonemes, and word breaks are
not always marked by silence. The sound morphs
from one allophone to the next, providing few clear
boundaries. However, the speech in the streams used
by Sa�ran et al. is very regular, which allowed us
to consistently place breaks at the same location in
each word. The waveform in between each word pair
was identical every time it appeared, since it was
generated artificially. The beginning and ending of
each word was verified acoustically once, and then
the boundaries could be placed in exactly the same

location for each instance of each word. The result-
ing “answer keys” were therefore consistent, and as
close to the ground truth as possible.

4. Audio Segmentation Algorithm

The raw audio of both stimulus streams was
converted into a sequence of Mel-cepstral fea-
ture vectors, along with their first and sec-
ond order time derivatives and their log energy
(Davis and Mermelstein, 1980). The standard 13
cepstral features were used, so that each time slice of
the audio was represented by a 42-dimensional real
valued feature vector. That’s 13 cepstral features, 13
first order and 13 second order time derivatives, and
the log energy of each. This is a standard method of
feature extraction for speech processing, and it was
performed using the Matlab package “Voicebox.”

Since VE is designed to work on a sequence of to-
kens, these feature vectors must be quantized into a
manageable alphabet. A common technique in au-
tomatic speech recognition is to use Hidden Markov
Models with continuous observation densities to rec-
ognize phonemes (Rabiner, 1990). We will draw in-
spiration from these models, however we cannot ap-
ply the techniques exactly. In the infant experi-
ments the children learned to segment novel language
streams in a completely unsupervised way. There-
fore, any model of this process must also be entirely
unsupervised. These HMMs are typically trained on
labeled data, disqualifying them as plausible mod-
els. Specifically, a separate Markov chain is typically
trained to represent each phoneme in the language.
The models are built using a large set of hand-labeled
instances of each phoneme, and then their param-
eters are improved by bootstrapping over a large
audio corpus. Instead, we will suggest an unsuper-
vised model that can convert an audio stream into
a state sequence suitable for segmentation, but one
that does not necessarily correspond to the phoneme
sequence as a human would label it.

4.1 Unsupervised Acoustic Model

The critical observation is that we don’t necessar-
ily need a sequence that corresponds to the true
phonemes of the language. All that’s needed is a
model that decomposes an audio stream into a se-
quence of its most salient acoustic features. These
may or may not correspond to the “phonemes” as a
human might label them. But that is irrelevant, at
least as far as VE is concerned.

Just such a model was suggested by
(Iwahashi, 2006), and implemented by
(Brandl et al., 2008). We used a version of that
model in this work. Each phoneme was represented
using a 3-node Markov chain with Bakis-topology,
with the observation probability density of each
state represented by a mixture of Gaussian functions

116



(Rabiner, 1990). In order to train these models
without labeled data, we first trained a completely
connected Markov network containing 10 Gaussian
mixture states on the acoustic stream. The param-
eters of the network were initialized using k-means,
and then optimized using EM, so no labeled data
was required. Then, we stochastically sampled
paths of length 3 through that network based on
the learned transition probabilities. The m most
common paths were used to initialize m 3-node
Markov chains. The last state of each chain was
connected to the first state of every other chain,
including itself, initialized with uniform transition
probability. The parameters of this larger Markov
model were then optimized over the corpus using
EM.

In one implementation, m was set using the Akaike
information criterion (Brandl et al., 2008). Instead
we used m = 10 to build the models used in this
paper. We varied this parameter, and found that
it did not have a strong e�ect on the performance of
the model on this task. The results of that evaluation
are not included for space considerations. However,
if this model were to be applied to a larger or more
complex dataset, such an evaluation would certainly
be necessary.

4.2 Segmentation

Given a model as described above and an acoustic
stream for segmentation, we converted the stream
into a state sequence using Viterbi decoding. The
state sequence was simplified by assuming that all
nodes from the same Markov chain were equiva-
lent. So instead of a sequence of nodes in the
HMM, the stream was represented as a sequence of
3-node Markov chain labels. However, this created
sequences with long stretches of the same label re-
peated over and over. These repeated labels were
collapsed into a single token. So the final token se-
quence represented the order in which these chains
were visited in the decoding of the stimulus stream,
with no information about how long the sound stayed
in the same chain. If the chains corresponded to the
phonemes of the language, as they do in more typical
acoustic models, the result would be a transcription
of the spoken phonemes of the stream. The idea
is that the unsupervised model approximates the
phoneme sequence, but perhaps extracts a slightly
di�erent set of fundamental sounds.

We ran VE on the resulting label sequence. VE

placed breaks at locations of low internal entropy and
high boundary entropy. Then, after accounting for
the collapsed (i.e., repeated) states, it produced the
time stamps of all of the induced break locations in
each audio stream. These breaks were then checked
against the answer keys that had been manually cre-
ated for each stimulus stream (See Figure 1).

. . . 7  9  8  3  5  7  2  6  5  8. . .

. . . 9 9 9 8 8 8 8 8 8 3 3 . . . 7 7 7 7 2 2 2 2 2 2 . . .

VE Breaks

bu pa do ti tu

Figure 1: Evaluation of the breaks induced by VE. Each

break is mapped to its location in the expanded state

sequence, which corresponds to a timestamp in the audio

stream. The break counts as correct if it falls within the

marked boundary between two words. The states are

represented by their numeric index in the Markov model.

5. Evaluation Methodology

In order for an induced break to count as a correct
break, it had to be placed between the specified end
of the previous word and the beginning of the next
one, within an error of one time slice. The feature
vectors that composed the audio stream were calcu-
lated using a window that was 0.016 seconds wide
with a 50% overlap. This means that the additional
time slice allowed at each boundary increased the
break window by 0.008 seconds. This leeway was
provided to compensate for labeling errors or other
boundary conditions.

An induced break was counted as breaking two
words if it was placed anywhere in the window be-
tween them. Both stimulus streams were 61.2 sec-
onds long. Stimulus stream A contained approxi-
mately 7.7 seconds of “break” time, and stream B
contained 7.2 seconds. The reason for the discrep-
ancy is that the di�erent pronunciations of the first
and last syllables of the words in each stream led to
slightly di�erent amounts of time between them. It
should be noted that these “breaks” are not perceiv-
able when listening to the stream, and are no longer
than the space between the phonemes within words.

Unfortunately these boundaries make it easier for
the algorithm to accidentally induce a break be-
tween two words. Thus, even random breaks will be
counted as correct some of the time. Accordingly, we
used a Monte Carlo method to simulate random seg-
mentations for each experiment. Each reported re-
sult is accompanied by the results of inducing a large
number of random segmentations, each one having
the same number of induced breaks as the algorithm
produced. The random breaks were induced in the
same compressed state sequence used by VE, and
were evaluated in the same manner. These random
trials are averaged and provide a baseline from which
to evaluate the algorithm.

The quality of the segmentation is evaluated based
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on the accuracy, hit-rate and f-measure of the in-
duced breaks. In this case, accuracy is the percent-
age of induced breaks that are correct, hit-rate is the
percentage of true breaks found by the algorithm,
and the f-measure is the harmonic mean of the two,
given by

f-measure= 2§accuracy§hitrate
accuracy+hitrate

The f-measure is treated as most important, since
it strikes a balance between the other two. It’s pos-
sible to increase the accuracy of the segmentation
by inducing fewer breaks, but being more confident
about those that are induced. However, this will
lower the hit-rate. Similarly we can raise the hit-
rate by inducing more breaks, but this will lower the
accuracy. The Voting Experts algorithm lets us ex-
plicitly make this tradeo� by adjusting the threshold
Vt for the minimum number of votes required to in-
duce a break at a location. All three of these metrics
will be reported for each of our experiments. Addi-
tionally, the experiments will be repeated for a range
of thresholds Vt, and the sensitivity of these metrics
to variation in that threshold will be demonstrated.

6. Experimental Results

We have outlined a general, unsupervised algorithm
for the segmentation of an audio stream. First,
convert the stream into an appropriate sequence
of feature vectors - in our case the Mel-cepstrum.
Then train an unsupervised Gaussian Mixture HMM
(GMHMM) on the sequence as described above. Use
this model to produce a sequence of Markov chain la-
bels based on the audio stream. Finally, collapse the
repeated labels in this sequence and run VE on the
result.

This algorithm constitutes a very basic applica-
tion of the VE model to a real audio stream. The
first question is whether this can induce an accurate
segmentation. The second question is whether we
can use this system to model the human segmen-
tation mechanism. The following experiments were
designed to answer both of these questions.

Experiment 1: We ran the segmentation process
described above separately on each stimulus stream
(A and B). We then compared the induced breaks to
the true breaks for each stimulus stream. The results
are shown in Figure 2.

The segmentation induced on both audio streams
was significantly more accurate than chance. Clearly
this model is capable of segmenting the given stim-
ulus streams. These results are even more surpris-
ing when considering that these models were each
trained on only one minute of audio. Presumably in-
fants might be better equipped to perform this task
since they have the advantage of a previously trained
acoustic model. They do not have to learn it from
scratch in just one minute as we have done here. But
even with that limitation, VE performs very well.
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Figure 2: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 1,

along with the performance of random segmentations on

both datasets.

It should be noted that the initialization of the
acoustic models is a stochastic process, and leads to
a unique model every time. The EM algorithm does
not necessarily find a global optimum for the model
parameters, but only a local maximum. Therefore,
the model should not be evaluated based on a sin-
gle instantiation, but rather based on several trials.
Accordingly, we trained 10 di�erent acoustic models
on each of the two stimulus streams. All three ex-
periments were performed 10 di�erent times with 10
di�erent pairs of models. The results were averaged
to produce the results reported.

Additionally, the segmentation step, where VE

was run on the token sequence, was repeated for dif-
ferent threshold values ranging from 1 to 8 for each
experiment. Notice the tradeo� between accuracy
and hit-rate as Vt varies. The f-measure, accuracy
and hit-rate are reported both for the aggregate over
all 10 models, as well as for the random trials over
the same data. For each trial that was done with a
single model, 10 random trials were performed. So,
overall, 100 random trials were performed in each
experiment for each stimulus stream.

Experiment 2: The point of this experiment is to
demonstrate that an acoustic model trained on stim-
ulus stream A can still be used to segment the audio
from stream B, and vice versa. The two streams
are composed of the same set of syllables. The only
di�erence is the order in which the syllables are spo-
ken, which may produce some interaction e�ects that
the GMHMM cannot model. However, most of the
sounds are the same. So, for instance, the tokeniza-
tion of stream B by an acoustic model trained on
stream A should still be useful for inducing a seg-
mentation on B.
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Figure 3: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 2.

Once again, the performance of random segmentation is

also shown.

To demonstrate this, we trained an acoustic
model on each stream to obtain GMHMMA and
GMHMMB . Then we used GMHMMA to tokenize
the feature vectors from stimulus stream B and
GMHMMB to tokenize stream A. Then we trained
a VE model on each of the token sequences and in-
duced a segmentation. Once again we used the true
breaks to evaluate the results (see Figure 3).

There is a slight drop in both the accuracy and hit
rate of each segmentation in this experiment. How-
ever, in each case the algorithm still performed much
better than chance. There is not a tremendous loss
due to the unmodeled interaction of the diphones in
the stimulus streams. This fact is important in un-
derstanding the results of experiment 3.

Experiment 3: This experiment is intended to
replicate the results of the infant studies. In those
experiments, the children listened to one stimulus
stream, and were then presented a novel token from
the second stream. Similarly, in this experiment, our
model is trained on one stimulus stream, and then
used to segment the other. That is, the GMHMM
and the statistical model of VE (the experts) are
trained on stream A, and then that model is used to
segment stream B and vice versa.

Figure 4 shows that the algorithm is almost com-
pletely unable to induce a segmentation. It performs
only slightly better than chance, and this is most
likely due to its ability to pick out syllables. From the
results of experiment 2 we can conclude that the poor
performance is not the fault of the acoustic model.
Instead, the language model trained on one language
is insu⇥cient to induce a segmentation in another.

As the threshold increases, the algorithm induces
very few breaks. When Vt is higher than 5, almost
no breaks are induced (e.g., no breaks were induced
at all when Vt = 8). This explains why the accuracy

becomes erratic at higher threshold levels, and the
hit-rate drops very low. The random segmentations
only contained as many breaks as the algorithm in-
duced, so the random hit-rate drops as well. The fact
that not very many breaks were induced indicates
that the experts did not vote for the same break lo-
cations very often. They could not agree on suitable
breaking points, and therefore did not create many
breaks. Essentially, the algorithm was confused.
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Figure 4: The F-measure, accuracy and hit-rate of the

segmentation of both stimulus streams in Experiment 3,

along with the results of the random segmentation.

This corresponds precisely with the situation of
the 8-month-old who listens to stimulus stream A,
and then hears a novel word from stream B. The child
has learned the sounds present in the stream, and
has learned a statistical model that characterizes it.
Then, suddenly, that model is violated. The child is
initially unable to use the old model to “understand”
the novel word, and therefore becomes confused.

7. Conclusions and Future Work

We have described an unsupervised technique for
transforming spoken audio into a discrete sequence
of tokens suitable for segmentation by the Voting
Experts algorithm. This algorithm is novel in its ap-
plication to real audio, and its reliance on simple but
powerful information theoretic cues. We have shown
that the VE model is capable of inducing an accu-
rate segmentation on an audio stimulus stream with
very limited training data. Finally, we have shown
that the behavior of this model mimics the behavior
of 8-month-old infants. This should be counted as a
small victory for VE as a model of human segmen-
tation. It also demonstrates that distributional cues
can be used to segment audio streams. Specifically,
the low internal entropy and high boundary entropy
of chunks provide su⇥cient markers to do so.

The psychological studies that have explored in-
fant statistical learning have used stimulus streams
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that could be segmented using transitional probabil-
ities. Infants can segment these simple streams, but
the full extent of their capabilities remains unknown.
VE can segment the same stimulus streams, and
therefore is not disqualified as a possible model of
the human distributional speech segmentation mech-
anism. If an algorithm can pass that test, it’s at least
a plausible candidate. However, this may be an eas-
ier task than children face with natural language.

It is simply unknown how important a role dis-
tributional segmentation really plays in the acquisi-
tion of language, and how sophisticated that mecha-
nism is. Presumably it is significantly useful, or else
children wouldn’t demonstrate this ability at such a
young age. Since some studies have shown that the
simple statistical learning approaches are not su⇥-
cient to segment natural language, we should con-
clude that infants have a more sophisticated strategy.
VE has the advantage of being able to segment many
di�erent kinds of speech, including natural language
phoneme sequences (Miller and Stoytchev, 2008a).
This makes it a much more attractive candidate for
modeling human segmentation, since the approaches
based on transitional probabilities have not done the
same. The next logical step is to use this model on
a natural language corpus to see how e�ective it can
really be.
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Abstract

An important part of development is ac-
quiring actions to interact with the envi-
ronment. We have developed a computa-
tional model of autonomous action acquisi-
tion, called QLAP. In this paper we investi-
gate di↵erent strategies for developmental ac-
tion acquisition within this model. In par-
ticular, we introduce a way to actively learn
actions and we compare this active action ac-
quisition with passive learning of actions. We
also compare curiosity based exploration with
random exploration. And finally, we exam-
ine the e↵ects of resource restrictions on the
agent’s ability to learn actions.

1. Introduction

We seek to understand how an agent (human or oth-
erwise) can learn to adapt to its environment through
the process of development. Gibson (1988) proposed
that human children are endowed with systems to al-
low them to explore and learn about the world. She
emphasized that it was this exploration that enabled
cognitive development. One such system appears to
be that for learning contingencies. It has been pro-
posed that humans have an innate contingency detec-
tion module (Gergely and Watson, 1999). Human
infants can detect contingencies in their environment
shortly after birth (DeCasper and Carstens, 1981),
and they can link these contingencies with observ-
able e↵ects (Adolph and Joh, 2007).

Inspired by this idea that learning can take
place through the acquisition of contingencies,
we created the Qualitative Learner of Action
and Perception (QLAP). QLAP is constructivist
in the tradition of Piaget (1952) because the
agent constructs representations of the environment.
QLAP learns contingencies and actions through au-
tonomous exploration. QLAP learns contingen-
cies by observing events in the environment and
looking for correlations (Mugan and Kuipers, 2008,

Mugan and Kuipers, 2007). Once a contingency is
found that is su�ciently deterministic, QLAP cre-
ates a plan to perform an action based on that con-
tingency (Mugan and Kuipers, 2009).

Adolf and Joh (2007) note the importance of
action learning in the role of providing agent-
centered input to the perceptual systems. Gen-
erating agent-centered experience by learning ac-
tions requires that the agent autonomously explore
its environment. This type of exploration has
been characterized as intrinsically motivated learn-
ing (Berlyne, 1965) and is essential for autonomous
development (Ryan and Deci, 2000). The problem
of picking which action to choose has been stud-
ied extensively, for example see (Schmidhuber, 1991,
Huang and Weng, 2002, Marshall et al., 2004). One
promising approach is picking actions that maximize
the learning gradient (Oudeyer et al., 2007). How-
ever, exploration for learning actions is more than
picking which action to choose. The agent must first
form the actions.

QLAP assumes that the agent has motor primi-
tives but no initial complex actions. From these mo-
tor primitives, QLAP learns actions such as reach-
ing out to hit a block. However, some more complex
actions may have to be learned using active action
acquisition. Active action acquisition involves two
steps. First, the agent tunes its search for contingen-
cies related to a desired action to be more sensitive,
so that it finds contingencies that it might otherwise
overlook. And second, the agent makes it more likely
that a found contingency will become a plan to per-
form the action by lowering the required reliability
of the contingency.

The contribution of this paper is to provide an
evaluation of exploration strategies for learning ac-
tions. We evaluate di↵erent exploration strategies in
an environment inspired by the sticky mittens experi-
ments (Needham et al., 2002). In these experiments,
children wore mittens covered with Velcro that al-
lowed them to more easily grasp objects. They found
that infants trained with the sticky mittens exhibited
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Figure 1: (a) An action brings a qualitative variable v

to a desired value q. Each action can have one or more

plans. Each plan is a di↵erent way to perform the action.

(b) Each plan is learned by first learning a contingency.

A contingency links an antecedent event E1 with a con-

sequent event E2. Associated with each contingency is a

probability table that gives the probability of event E2

following event E1 for each value of the variables in con-

text C. (c) Each event is able to be perceived because of

the discretization created by the landmarks.

more object engagement and more sophisticated ob-
ject exploration strategies.

We evaluated the e↵ect of using active action
acquisition. We found that active acquisition im-
proved the agent’s performance on the task of
picking up the block with the sticky mitten, but
hurt the agent’s performance on the easier task
of moving the block. We found that using ac-
tive action acquisition in combination with the ex-
ploration method of Intelligent Adaptive Curiosity
(IAC) (Oudeyer et al., 2007) worked best in this con-
tinuous domain for enabling the agent to develop so
that it could learn to pick up the block using the
sticky mitten. We also evaluated the use of devel-
opmental restrictions and we found that certain de-
velopmental restrictions allowed the agent to reduce
the number of learned contingencies without hinder-
ing learning. And finally, we found that the develop-
mental trajectory allows that agent to progress from
actions being used mostly as exploration to actions
being used as subactions for other actions.

2. The Qualitative Learner of Action

and Perception, QLAP

The Qualitative Learner of Action and Perception
(QLAP) is a computational model for learning both
important perceptual distinctions and actions (see
Figure 1). QLAP assumes that the agent can distin-
guish objects from the background and track them.
QLAP also assumes that the agent can measure dis-
tances between objects and that the agent has motor
variables for output. The result of these assumptions

is that the agent interacts with the world using a set
of real-valued variables.

2.1 Qualitative Representation

The distinctions that QLAP learns allows it to rep-
resent the state of the world qualitatively. It does
this by converting the continuous input and motor
variables to qualitative variables (Kuipers, 1994). A
qualitative representation allows the agent to focus
on important distinctions while ignoring others. The
qualitative variables are created by discretizing the
continuous variables using landmarks. A landmark
is a symbolic name for a point on a number line.
A variable v with two landmarks l1 and l2 would
have a set of five possible qualitative (discrete) val-
ues {(�1, l1), l1, (l1, l2), l2, (l2,+1)}. QLAP must
learn these landmarks. For example, QLAP learns
a landmark that a force of at least 300 is needed to
move the hand to the right. It also learns a land-
mark that a distance of 0 between the right side of
the hand and the left side of the block is important
to move the block to the right.

2.2 Landmarks to Events

Landmarks allow the agent to perceive events. An
event is the change in qualitative value of a variable.
We use the notation E = X

t

!x to denote event
E where the value of qualitative variable X changes
to x at time t (although the t may be omitted for
brevity.) For example, when the distance between
the right side of the hand and the left side of the
block goes to 0.

2.3 Events to Contingencies

The perception of events allows the agent to learn
contingencies. Contingencies link an antecedent
event E1 = X!x with a consequent event E2 =
Y!y together in time. For each contingency, QLAP
learns a context C that gives the probability of the
consequent event following the antecedent event for
each value of the variables in C. We call the highest
probability of event E1 leading to event E2 the best
reliability of the contingency. Once the best reliabil-
ity of a contingency exceeds 0.75 the contingency is
labeled su�ciently deterministic.

New landmarks can be learned by finding new dis-
tinctions that make contingencies more reliable. For
example, the agent may learn a contingency that
states that the event of a positive force on the hand
will cause the event of the hand moving to the right.
Once this contingency is learned, QLAP can exam-
ine the real values of the variables and determine if
there is a new distinction that will make this contin-
gency more reliable. In this case, it takes a force of
300 units to move the hand to the right. The agent
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can then update the contingency to reflect this new
distinction by introducing a landmark. The agent
can also learn that the hand will not move to the
right if it is already all the way to the right. It can
then learn a landmark on the location of the hand to
indicate when it is in its rightmost position.

2.4 Contingencies to Plans for Actions

In QLAP, the agent learns actions to achieve the
qualitative values of variables. Each action sets
the qualitative value of a variable to a desired
value. In QLAP, actions may be performed in
more than one way. Each way to perform the ac-
tion is called a plan. Each plan is represented
as an option (Sutton et al., 1999). Once a con-
tingency is su�ciently deterministic it is converted
into a plan. These plans are learned using re-
inforcement learning (Sutton and Barto, 1998), see
(Mugan and Kuipers, 2009) for details.

3. Developmental Learning in QLAP

QLAP is not given a learning objective but learns
in a developmental progression. This developmen-
tal progression comes from incrementally learning
contingencies, actions, and landmarks. In addition,
it comes from developmental restrictions that take
three forms:

1. restrictions on learning contingencies

In QLAP, a contingency can only be learned if its
antecedent event can be reliably predicted by a
previously learned contingency.

2. restrictions on learning plans

A contingency can only be converted to a plan
if the antecedent event can be reliably achieved
using an existing action.

3. restrictions on cognitive load

An agent has limited cognitive resources and an
important part of development is freeing up re-
sources. QLAP designates an action as open,
full, or closed. An action is closed if it can be
achieved 75% of the time; otherwise, it is full if
it has 5 plans; and it is open otherwise. Actions
that are closed or full do not accept additional
plans. When an action is closed, it also a↵ects
the learning of contingencies. QLAP does not
add a contingency if the action to bring about
the consequent event is closed.

Contingencies can also be deleted. If the con-
tingency does not become a plan after 100,000
timesteps, it is deleted. When an action is closed,
all of the related contingencies that are not part
of plans for that action are deleted.

Plans can also be deleted. A plan and its as-
sociated contingency are deleted if its associated

action is still not closed and the reliability of the
plan is less than 5%.

3.1 Choices Made During Exploration

The agent continually makes three types of choices
during its exploration. These choices vary in time
scale from coarse to fine.

1. The agent chooses an exploration action, which
is a previously learned action that it can prac-
tice. This can be done randomly or by using a
version of Intelligent Adaptive Curiosity (IAC)
(Oudeyer et al., 2007) which first measures the
change in the agent’s ability to perform the action
over time and then chooses actions where that
ability is increasing. For IAC, we use a time win-
dow ⌧ = 25 and a smoothing parameter ✓ = 25
(before the time window of ⌧ = 25 is full, actions
are chosen based on the product of probability of
success in the current state and the entropy of
their overall reliability).

2. The agent chooses the best plan for performing
the action. The agent chooses the plan most
likely to succeed in the current state with proba-
bility 0.95 and chooses a random plan otherwise.

3. The agent chooses the subaction within the
plan. This is done using the standard re-
inforcement learning technique ✏-greedy
that balances exploration with exploitation
(Sutton and Barto, 1998).

3.2 Execution

An outline of the execution of QLAP is shown in Al-
gorithm 1. Note that for the first 20,000 timesteps
the agent chooses random motor babbling explo-
ration actions. After that point it chooses a mo-
tor babbling action with probability 0.1, otherwise
it chooses an exploration action and action plan ac-
cording to (Mugan and Kuipers, 2009).

4. Active Action Acquisition

A plan to perform an action is formed when the con-
tingency is su�ciently deterministic. In the develop-
mental progression just described, the agent learns
these plans without paying special attention to what
the goal of the associated action is. We call this ap-
proach passive action acquisition. This method of
passive learning may not be su�cient to learn dif-
ficult actions. To learn di�cult actions, the agent
may have to employ active action acquisition. To
learn a plan for an action chosen for active action
acquisition, QLAP

1. lowers the threshold needed to learn a con-

tingency. QLAP learns a contingency linking an
event E1 and an event E2, if E2 is more likely to
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Algorithm 1 The Qualitative Learning of Action
and Perception (QLAP)
1: for t = 1 :1 do

2: Sense environment
3: Convert input to qualitative values using cur-

rent landmarks
4: Update statistics to learn new contingencies
5: Update statistics for each contingency
6: if mod(t, 2000) == 0 then

7: Learn new contingencies
8: Delete unneeded contingencies and plans
9: Learn new landmarks to change qualitative

representation
10: Learn new actions
11: end if

12: if current exploration action is completed
then

13: Choose new exploration action and action
plan

14: end if

15: Get low-level motor command based on plan
of current exploration action

16: Pass motor command to robot
17: end for

soon occur given that E1 has occurred than oth-
erwise. More formally, if we define a time window
with the predicate soon(t, E) that is true if event
E occurs within a window if k = 5 timesteps
starting at time t, then we can say that the con-
tingency is formed if

Pr(soon(t, E2)|E1(t))� Pr(soon(t, E2)) > ✓

p

where ✓

p

= 0.05. If event E2 is chosen to be the
goal of an actively acquired action, we make it
more likely that a contingency will by learned by
using ✓

a

= 0.02 instead if ✓

p

= 0.05.
2. lowers the threshold needed to learn a

plan. A contingency becomes a plan if its best
reliability is greater than 0.75. For a contingency
with a consequent event that is chosen to be the
goal of an actively acquired action, this threshold
is reduced to 0.25.

This leaves the question of when to specify events
as goals of actively acquired actions. An event is cho-
sen as a goal for active action acquisition if the prob-
ability of being in a state where the event is satisfied
is less than 0.05; we call such an event su�ciently
rare. This is reminiscent of Bonarini et al. (2006).
They consider desirable states to be those that are
rarely reached or are easily left once reached.

5. Evaluation

We run experiments using the environment shown
in Figure 2. The environment is implemented in

Breve (Klein, 2003) and has realistic physics. The
simulation consists of a robot at a table with a
block. The robot has an orthogonal arm that can
move in the x, y, and z directions. During learning,
the agent chooses exploration actions autonomously.
Each time the agent knocks the block out of reach,
the block is replaced with a di↵erent block and put on
the table. The block size varies randomly in length
from 1.0 to 3.0 units.

For each experiment we trained 40 agents. We
trained each for 250,000 timesteps, which corre-
sponds to about 3.5 hours of physical experience.
The robot has a “sticky mitten.” If the center of
the block touches the bottom of the hand, then the
block is “grabbed.” For simplicity, there is no un-
grab action. Instead, the block has a probability of
0.1 of becoming ungrabbed at each timestep. Then
when the block becomes ungrabbed, it falls to the
table with probability 0.5 or gets moved to another
place on the table with probability 0.5. To make the
environment more realistic, there are two distractor
objects that float in front of the agent. The agent
can perceive the distractor objects and learn contin-
gencies about them, but cannot interact with them.

5.1 Evaluation Tasks

We measure the performance on two tasks. The first
task is that of moving the block in a specified direc-
tion. The agent is told to move the block either left,
right, or forward. The second task is picking up the
block using the sticky mitten.

QLAP autonomously learns without being speci-
fied a task. We can be confident that it will learn
the specified tasks because the number of variables
in the environment is small. However, during learn-
ing, the agent does not know that it will be evaluated
on these tasks.

Every 10,000 timesteps (about every 8 minutes of
physical experience) we save the state of the agent.
We then test how well each can do that task starting
from this stored learned state. Each evaluation con-
sisted of 100 episodes. Each episode lasted for 300
timesteps or until the block was moved. The agent
received a penalty of �0.01 for each timestep, and it
received a reward of 10.0 if it completed the task.

5.2 Experimental Conditions

active random This case used active action acqui-
sition with exploration actions chosen randomly
from a uniform distribution.

active IAC This case used active action acquisition
with exploration actions chosen using Intelligent
Adaptive Curiosity.

passive random This case used passive action ac-
quisition with exploration actions chosen ran-
domly.
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(a) Not grasping (b) Grasping (c) Above view

Figure 2: The robot is implemented in Breve; a simulator with realistic physics. The robot has a torso with a 3-dof

orthogonal arm and is sitting in front of a table with a block and two floating distractor objects. The robot has three

motor variables ũ

x

, ũ

y

and ũ

z

that move the hand in the x, y, and z directions, respectively. The location of the

hand is given by three time-varying continuous proprioceptive variables

˜

h

x

,

˜

h

y

,

˜

h

z

that represent the location of the

hand in the x, y, and z directions, respectively. The relationship between the hand and the block is represented by

the continuous variables x̃

rl

, x̃

lr

, ỹ

tb

, ỹ

bt

, and z̃

du

. The variable x̃

rl

is the x value of the location of the right side of

the hand in a coordinate system whose origin is centered on the left side of the block (variable x̃

lr

is analogous). The

variable ỹ

tb

is the y value of the location of the far (top) side of the hand in a coordinate system whose origin is centered

on the bottom (near) side of the block (variable ỹ

bt

is analogous). And variable z̃

up

is the z value of the location of the

down side of the hand in a coordinate system whose origin is centered on the up side of the block. Additionally, the

variables c̃

x

and c̃

y

represent the two-dimensional coordinates of the center of the hand in the frame of reference of the

center of the block. There is also a Boolean touch variable T that is true if the block is colliding with the hand and

the center of the top of the block is underneath the bottom of the hand. There are also two distractor floating objects

f

1
and f

2
. The variables for f

1
are

˜

f

1
x

,

˜

f

1
y

, and

˜

f

1
z

and the variables for f

2
are analogous. Including the direction of

change variables, there are 32 variables total.

passive IAC This case used passive action acquisi-
tion with exploration actions chosen using Intel-
ligent Adaptive Curiosity.

active random NDRC This case used active ac-
tion acquisition with exploration actions chosen
randomly, but with no developmental restriction
on learning contingencies. This means the an-
tecedent event of a contingency does not have to
be su�ciently reliably predicted by another con-
tingency for the contingency to be learned.

active random NDRA This case used active ac-
tion acquisition with exploration actions chosen
randomly, but with no developmental restriction
on learning plans for actions. Thus, the agent
does not have to be able to achieve the antecedent
event of a contingency with su�cient capability
before it can become a plan for an action.

all active random This case used active action ac-
quisition with exploration actions chosen ran-
domly with the change that all actions are ac-
quired using active action acquisition.

To make the evaluation fair between active and
passive action learning, during evaluation a contin-
gency must be deterministic to be used as a plan.

6. Results

6.1 Ability to Perform Tasks

The results of the move task are shown in Figure 3.
On this task passive action acquisition did better.
This is likely because moving the block was su�-
ciently rare and using active acquisition the maxi-
mum number of plans was filled up with plans from
inferior contingencies.

The results of the pickup task are shown in Fig-
ure 4. How the agent was able to do on this task
largely depended on its ability to learn a su�ciently
deterministic contingency. The method of active

IAC did the best. It also had the most experience
picking up the block (see Figure 7). The method of
all active random did poorly, most likely because
it spent too much time trying to move the distractor
objects (see Figure 8).

6.2 Exploration Using Various Actions

We evaluated how often various exploration tech-
niques explored di↵erent actions. Figures 5-7 show
the cumulative exploratory calls to various types of
actions. Figure 5 shows that Intelligent Adaptive
Curiosity has the nice property of not continually ex-
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Figure 3: The agent’s ability to move the block increases

as it develops. Passive action acquisition outperforms

active action acquisition.

Figure 4: The agent’s ability to pickup the block in-

creases as it develops. In this case active acquisition using

curiosity-based exploration performs the best.

ploring actions that the agent has already mastered.
Figure 6 shows that Intelligent Adaptive Curiosity
causes the agent to explore the relatively di�cult ac-
tion of moving the block. We see this behavior as well
with Figure 7 for the case of active IAC. Figure 8
shows that the agent should not pursue all actions
actively. In this case, all active random spends
time trying to manipulate the distractor objects.

6.3 Developmental Restrictions

We see in Figures 3 and 4 that active random does
about as well as active random NDRC, which has
no developmental restriction on learning contingen-
cies, and active random NDRA, which has no
developmental restrictions on learning plans for ac-
tions. However, we see in Figure 9 that during the
early course of the agent’s development that active

Figure 5: Exploration calls to moving the hand. The

curiosity based exploration methods (active IAC and

passive IAC) e�ciently use exploration time by making

fewer calls to this relatively easy action.

Figure 6: Cumulative exploratory calls to hit the block

left, right, or forward.

random has fewer open contingencies, and thus uses
fewer resources for those contingencies.

6.4 Exploration Action to Subaction

When the agent first learns an action it is often called
as part of exploration. An interesting part of the
developmental progression is that these actions are
often later called more often as subactions of other
actions. We show graphs from the method active

IAC that compare exploration calls to subaction
calls. Figure 10 shows the calls for moving the hand
relative to the block (c

x

and c

y

in Figure 2). These
actions are first used more as exploration actions and
then later more as subactions.
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Figure 7: Cumulative exploratory calls to pickup the

block. Active acquisition using curiosity-based explo-

ration has the most calls to this complex action.

Figure 8: Cumulative exploratory calls to manipulate the

floating objects. The method all active random has the

most calls to this distractor task.

7. Conclusion

In this paper we have presented an evaluation of ex-
ploration strategies for learning actions. We found
that a combination of active action acquisition and
curiosity-based exploration worked best to enable an
agent to develop so that it could pick up a block with
a sticky mitten. However, we found that active ac-
tion acquisition was detrimental to the simpler task
of moving the block. This is an interesting result
that warrants further investigation.

The results indicated that curiosity-based explo-
ration enabled the agent to spend more time ex-
ploring the relatively more advanced tasks of moving
the block and picking up the block, and enabled the
agent to spend less time on the easily masted task of
moving the hand. The results also indicated that we
could add restrictions on resources without hindering

Figure 9: This graph shows that the number of contin-

gencies does not increase without bound. We see two

drops in the number of contingencies. The first drop cor-

responds to learning to move the hand and those actions

becoming closed. The second drop corresponds to con-

tingencies being deleted after 100,000 timesteps because

they did not become plans to perform actions.

Figure 10: Action calls to moving the hand relative to

the block for the method active IAC. This task is first

called mostly as exploration and then later more as a

subaction.

learning.

There are, of course, other approaches that en-
able agents to learn actions. For example, Metta
and Fitzpatrick (2003) focus on learning a↵ordances
(Gibson, 1979). However, the focus of QLAP is on
enabling an agent to autonomously learn actions
from motor primitives. The results presented here
will most closely apply to models where the agent
picks which action to learn during the process of au-
tonomous development.
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Abstract

The first reaching movements of human in-
fants lack limb coordination leading to ataxic-
like hand trajectories. Kinematically, these
early trajectories are characterized by multi-
ple peaks in the hand velocity profile which
gradually decrease in frequency during devel-
opment. In this paper we explore the hy-
pothesis that the jerky hand trajectories seen
in early infancy can be the result of impre-
cise internal motor models. Results from our
simulation suggest that imprecise estimations
of multi-joint inter-segmental torques (e.g.,
Coriolis forces) by the controller may induce
multi-peak hand velocity profiles. When the
system was allowed to use delayed peripheral
feedback (300 ms after reaching onset), the
resulting kinematics began to resemble those
seen in early infancy. This suggests that the
output of an imprecise internal model of limb
dynamics coupled with delayed feedback may
be sufficient to explain early human hand tra-
jectories. Our data provide an alternative to
previous hypotheses theorising jerky trajecto-
ries as the result of concatenated mini ballistic
movements.

1. Introduction

The first goal-directed movements of young infants
at the age of 4-5 months lack coordination which
gives them an ataxic appearance. The lack of proxi-
mal joint coordination leads to multiple movement
units of the hand during early attempts to reach
for objects (von Hofsten, 1979, Konczak et al., 1995,
Berthier, 1999). That is, the hand is not moved

in a smooth, stereotypical fashion, but its trajec-
tory is jerky showing numerous changes in direction.
Previous research on motor control in early infancy
tried to explain this phenomenon on the basis of a
faulty planning mechanism or as a compensatory mo-
tor strategy trying to overcome the lack of control
(von Hofsten, 1992, Berthier, 1999). In this view,
the observed segmented trajectories are a series of
concatenated mini ballistic trajectories. At the end
of each movement segment, the control system uses
either afferent information to update the initial plan
and to correct the chosen joint paths (on-line feed-
back control) or based on the experience from previ-
ous failures it tries not to perform a single large-
amplitude reach, but executes a series of planned
sub-movements. Each sub-movement is viewed as a
perfect trajectory following the minimum-jerk prin-
ciple (Berthier, 1999).

While such view could explain the appearance of
multiple hand velocity profiles seen in infant reach-
ing, it relies on a set of assumptions. First, the in-
fant’s motor system is seen as not being ready to deal
with the peripheral bio-mechanics, but it is capable
of using peripheral feedback very fast and effectively.
Second, it assumes that higher cognitive structures
“know” about this control predicament and induce
the motor system to adapt a compensatory strategy
by which a sequence of small amplitude movements
are performed in order to approach a desired objects.

We here present an alternative view that may ex-
plain the phenomenon of dyscoordination in early in-
fancy without recurrence to a cognitive mechanism.
First, the assumption is made voluntary sensorimo-
tor control is based on movement planning. Second,
limb mechanics are controlled by the central ner-
vous system. We make no specific assumption about
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the exact neuroanatomical location of these control
structures, although it is known that in humans they
involve the motor cortices, the cerebellum, basal gan-
glia and the spinal cord. One way to control limb
mechanics is that the neural controller has acquired
an internal model of the peripheral mechanics which
implies that it operates like an inverse model of the
body. There is increasing empirical evidence that
is consistent with the view that human motor sys-
tems uses inverse models for the multi-joint limb con-
trol (Gandolfo et al., 1996, Wolpert et al., 1998) and
that these models become more precise during devel-
opment (Jansen-Osmann et al., 1997). The question
arises of how the infant’s brain acquires an inverse
model? In theory, it could be genetically determined
and be operational at birth. This is unlikely know-
ing that early reaches show clear signs of dyscoor-
dination, which implies that infant internal motor
models at best contain imprecise estimations of the
real limb parameters at birth or that the associated
planning agencies are not fully functional in early in-
fancy or both. An alternative view is that internal
models are not pre-wired in the brain but are ac-
quired through a process of parallel exploration and
calibration (Metta et al., 1999). Assuming that the
infant brain has acquired some form of an inverse
motor model before the onset of goal-directed be-
haviour (e.g. through ”motor babbling”), the ques-
tion arises whether motor performance is susceptible
to imprecise estimations of specific limb mechanical
parameters. For example, given the rapid growth
during the first postnatal months, could it be that
an over- or underestimation of inertia or mass im-
pacts on hand trajectory formation? The purpose
of this paper is to investigate the hypothesis that
early human reaching trajectories are the result of
imprecise estimations of limb dynamics. We com-
pared the simulated reaching kinematics generated
by an artificial neural controller consisting of an in-
correct inverse model of the human limb dynamics to
the kinematics of human infants observed at the on-
set of goal-directed reaching (Konczak et al., 1995,
Konczak and Dichgans, 1997). An incorrect con-
troller implies that only imprecise estimations of limb
mechanical parameters are available to the control
system. To test the effects of an incorrect inverse
model on trajectory formation, we developed a 4 de-
grees of freedom arm simulation that received adult-
like kinematics as movement plan. Assuming a con-
troller with a correct internal model of the arm dy-
namics, we show that the generated movement tra-
jectories are identical to the planned ones. We then
manipulated limb parameters such as inertia, inter-
action torques or gravity and compared the resulting
kinematics with the planned trajectories.

Though the scope of our considerations within the
current paper is limited to infant motion planning,

Figure 1: Three dimensional representation (using a

Matlab
R© toolbox (Corke, 1996)) of the arm model

kinematics in the configuration q = [−π
3
,−π

3
,

π
3
, 0]". The

shoulder and the elbow are represented by two universal

joints (two degrees of freedom each). The picture shows

also the link reference frames (Σ1, Σ2) and the end effec-

tor reference frame (ΣE). The root reference frame Σo

corresponds to the plot axes.

it will be evident that the overall framework have
important implications in the field of robotics, with
specific concern to developmental approaches. As a
matter of fact, in a wide sense, our research considers
the relative role of feedback and feedforward motor
control with specific attention to various stages of
development.

2. Method

This section describes the basic setup of the simula-
tion. The arm model is composed of two segments,
nominally the upper arm and the forearm. Each seg-
ment has two joints (two at the shoulder and two at
the elbow), so that the overall structure has four de-
grees of freedom (see figure 1 for a sketch of the kine-
matic structure). The angular position of the i-th
degree of freedom will be denoted qi and the overall
arm configuration q = [q1, q2, q3, q4]! ∈ R4. Accord-
ing to the Denavit-Hartenberg convention, we define
an inertial reference frame Σo and associate two ref-
erence frames (Σ1, Σ2) to each of the segments (see
figure 1). The rigid roto-transaltion from Σi to Σo

will be denoted oTi and computed as follows:

oT1 = T1(q1)T2(q2);
oT2 = T1(q1)T2(q2)T3(q3)T4(q4);
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i αi ai di

1 0 0 0
2 π

2
0 0

3 0 l1 0
4 -π

2
0 0

Table 1: Kinematic parameters that describes the arm

forward kinematics as a function of simple anthropomet-

ric measurement, i.e. the upper arm length l1.

with Ti(qi) represented by:

Ti =





cosqi − sinqi 0 ai

cosαi sinqi cosαi cosqi − sinαi − sinαi di

sinαi sinqi sinαi cosqi cosαi cosαi di

0 0 0 1



 , (1)

with parameters αi, ai and di given in table 1 and
computed from simple anthropometric measurement.

The differential equation used to describe the arm
dynamics is the following (Murray et al., 1994):

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (2)

where q ∈ R4 is the vector of generalised coordinates
(i.e. angular displacements) describing the arm pos-
ture, τ ∈ R4 is the associated vector of generalised
forces (i.e. joint torques) describing the muscle ac-
tivation and M , C and G are the inertia, Coriolis
and gravitational component of the dynamical forces
acting on the arm. The analytical expressions for all
these components have been constructed as proposed
in (Yoshikawa, 1990) page 94. Their numerical val-
ues have been computed from simple anthropomet-
ric measurements following the approach proposed
by (Schneider and Zernicke, 1992). The interested
reader can find the complete analytical derivation in
Appendix A.

2.1 Control strategy

Given the applied control strategy τ(t, q, q̇), t ∈ [0, T ]
and the system initial condition [q(0), q̇(0)] = [q0, q̇0]
(typically q̇0 = 0), the resulting reaching movements
have been simulated by integrating (2) with Matlab

Simulink
R©. Within the current framework, given a

desired movement to be performed qd(t), t ∈ [0, T ]
the applied control strategy is composed of a feedfor-
ward component τff (relying on an approximation

M̂ , Ĉ, Ĝ of the system dynamics) and a feedback
component1 τfb:

τ(t, q, q̇) = τff (t) + τfb(t, q, q̇) (3)

1In order to simplify the analysis we will not consider

generic feedback gain matrices Kp ∈ R4×4 and Kv ∈ R4×4.

We will define instead Kp = kpI and Kv = kvI where I is the

4 × 4 identity matrix. The effects of feedback have been eval-

uated by varying the scalar gains kp and kv in the intervals

kp ∈ [0, 1000] and kv ∈ [0, 100].

Figure 3: Exemplar hand reaching trajec-

tories at different stages of development

(Konczak and Dichgans, 1997). Remarkably, the

non smooth profiles displayed by early infants are

gradually replaced by straight trajectories characterized

by roughly constant curvature.

where:

τff (t) = M̂(qd)q̈d + Ĉ(qd, q̇d)q̇d + Ĝ(qd), (4)

τfb(q, q̇, t) = Kp(q − qd) + Kv(q̇ − q̇d). (5)

The desired trajectory qd(t), t ∈ [0, T ] (i.e., the
movement plan) was extracted from a single adult
goal-directed reaching movement captured at 100 Hz
and interpolated with splines2. The use of an adult
reaching profile as input for the simulation was based
on the notion that it best reflected a biologically
plausible movement plan.

3. Results

We systematically evaluated the effect of an impre-
cise controller for a wide range of incorrect dynamical
parameters to obtain a sense of how sensitive the sys-
tem was to imprecise estimations of inertial, gravi-
tational and inter-segmental torques). The resulting
artificial trajectories were then compared with the
reaching trajectories of one human infants at differ-
ent developmental stages (see Figure 2).

At first we verified that if the approximated dy-
namics (M̂ , Ĉ, Ĝ) perfectly match the system dy-
namics (M , C, G) then the system follows the
planned trajectory, i.e. q ≡ qd (see Figure 4).

As a second step, we manipulated the feedforward
component of the controller in order to visualize the
effect of a mismatch between approximated and real
dynamics. As shown in Figure 1 the development of
reaching in humans is associated with a decrease in a

2The use of spline interpolation allows to obtain a con-

tinuous time function with sufficient smoothness properties

for performing the double derivative operation in order to get

q̇d(·) and q̈d(·) from qd(·).
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Figure 2: Exemplar 3D resultant hand velocity profiles of reaching movements at different stages of infant development

(Konczak et al., 1995); the right graph shows the typical bell shaped velocity profile of an adult, which was used as

movement plan.
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Figure 4: Joint angle trajectories corresponding to a typ-

ical reaching movement (data captured from an adult).

Solid lines, q, correspond to captured data. Dashed lines,

qd, correspond to the trajectories performed when the

feedforward controller perfectly inverts the dynamics of

the artificial arm (M̂ = M , Ĉ = C, Ĝ = G). Clearly,

resulting trajectories corresponded to the desired one

(q ≡ qd).
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Figure 5: Effects of incorrect controllers estimates in the

inertial and gravitational components (M̂ #= M , Ĝ #= G

but Ĉ = C) on the hand velocity profiles when applying

a pure feedforward control (τ = τff ). Shown are four es-

timates of gravitational torque (dG = −25%, dG = 25%,

dG = 50% and correct estimate dG = 0%). It is evident

that inaccurate gravitational and inertial component do

not produce evident double peak velocity profiles.
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Figure 6: Four examples (dC = −25%, dC = 25%,

dC = 50% and correct estimate dC = 0%) of Corio-

lis forces miscalculation in a pure feedforward controller

as a function of changing estimates of inertial torques.

Remarkably, relevant overestimates of the Coriolis com-

ponent produce double peak velocity profiles which were

not present in case of inaccurate gravitational and iner-

tial components.

the number of peaks of the hand velocity. One main
result of the simulation was that similar multi-peak
velocity profiles were generated when the controller
values overestimated the Coriolis forces. This is evi-
dent in Figure 5 and 6 where we visualized the effects
of a pure feedforward controller on the resulting hand
velocity profiles. In particular, Figure 5 shows the ef-
fects of unmatched inertial and gravitational terms.
The horizontal axes refer to time in seconds and per-
cent error dM in the inertia matrix approximation:

M̂(q) = (1 +
dM

100
)M(q).

Vertical axis (in gray scale) represents the hand tan-
gential velocity and the four different plots refer to
different values of the percent error dG in the Coriolis
component:

Ĝ(q, q̇) = (1 +
dG

100
)G(q, q̇).
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Figure 7: The effect of delayed feedback on hand trajec-

tory formation. Shown are velocity profiles when the con-

troller approximated dynamics did not match the Coriolis

arm dynamics. (Ĉ overestimates C of a 40%). After 300

ms position feedback became available. The various pro-

files show the effect of different feedback gains: the darker

the line the smaller the overall feedback gain k = kp +kv

is (see footnote 1 at page 3 for the definitions of kp and

kv).

Similarly, Figure 6 shows the effects of unmatched
inertial and Coriolis components with analogous def-
inition for the percent error dC in the Coriolis com-
ponent. From these pictures it is evident the hand
velocity profiles remained single-peaked for incorrect
estimation of the inertial and gravity components of
the dynamics. In case of relevant errors in the Corio-
lis approximation (bottom right corner of Figure 6),
multi-peak velocity profiles are generated by apply-
ing the pure feedforward component of the controller.

As a third step, we tested the effects of feedback
on trajectory formation. Feedback became available
after 300 ms, which approximately corresponds to
delay of visual feedback in humans. It was observed
that the combined effect of feedback and approxi-
mation errors in the Coriolis part of the feedback
controller might result in additional velocity peaks
(see Figure 7).

4. Discussion

Infants show ataxic hand trajectories with multiple
movement reversals when attempting their first goal-
directed reaches at around the postnatal age of 4-5
months. This observed lack of multi-joint coordina-
tion is not monocausal, but likely the result of com-
plex interactions within the neuromuscular system.
Cognitive accounts of motor development explained
the lack of coordination among limb segments not
primarily as a failure of a controller, but as a part
of strategy of higher motor centers to overcome the
deficiencies in low-level control (Berthier 1996). The
results our study indicate that a neural controller

with imprecise estimations of the true limb dynam-
ics may generate ataxic endpoint trajectories that
are comparable to those observed in human infants
around the onset of goal-directed reaching. Espe-
cially controller overestimation of the actual Corio-
lis forces will induce multiple velocity profiles. The
use of peripheral feedback will ensure that the hand
eventually reaches the target, when the feedback gain
is relatively high. It needs to be clear that these re-
sults were based on the providing a ”perfect” plan
to the controller. Thus, one can criticize that the
results of the current simulation are limited, because
this assumes that movement planning agencies in in-
fants develop earlier than the the controller. There
is no firm evidence in place to fully support this as-
sumption. However, we here wanted to make the
point that an imprecise controller alone can result
in ataxic hand trajectories. Thus, the coordination
deficit seen in early hand trajectory formation can be
viewed as a the result of an imprecise controller with
no need to assume the involvement of higher cogni-
tive functions. The kinematic effects of an incorrect
or noisy plan in conjunction with an incorrect inverse
model of the plant likely enhances dyscoordination.
A systematic investigation of the effect of imprecise
planning on hand trajectory formation will be a next
step in our series of simulations.
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A Dynamic equation computation

In this section we describe in details how to compute
the matrices M , C and the vector G. Specifically,
the (i, j) component of the matrix M denoted Mij

has been computed as follows:

Mij(q) = tr
(

J1j(q)Ĥ1J
!
1i(q) + J2j(q)Ĥ2J

!
2i(q)

)

; (6)

similarly, the i component of the vector Cq̇ (denoted
hi) has been computed as:

hi(q, q̇) =
4

∑

j,m=1

tr

(

∂J1j(q)

∂qm
Ĥ1J

!
1i(q)

+
∂J2j(q)

∂qm
Ĥ2J

!
2i(q)

)

; (7)

finally, the i component of the vector G denoted Gi

is:

Gi(q) = −m1g!J1i(q)s1 − m2g!J2i(q)s2, (8)

being g the gravitational vector expressed in Σo. In
the formulas above, the matrices Ĥ1 and Ĥ2 are the
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pseudo inertia matrices of the upper arm and forearm
respectively; matrices J1i and J2i are the derivative
of the rigid roto-translations oT1 and oT2:

J1i =
∂oT1

∂qi
J2i =

∂oT2

∂qi
i = 1, . . . 4,

being qi the i-th component of the vector q. The
value of Ĥ1 and Ĥ2 depends only on s1, s2 (centers
of mass position), m1, m2 (segment masses) and Î1,
Î2 (inertia tensor of the segments with respect to the
segment reference frame) according to (k = 1, 2):

Ĥk =









−Îx
k +Î

y
k
+Îz

k

2
Ĥ

xy
k

Ĥxz
k mksx

k

Ĥ
xy
k

Îx
k−Î

y
k
+Îz

k

2
Ĥ

yz
k

mks
y
k

Ĥxz
k Ĥ

yz
k

Îx
k +Î

y
k
−Îz

k

2
mksz

k
mksx

k mks
y
k

mksz
k mk









(9)

The numerical values of all these quantities have
been obtained from simple anthropometric mea-
surements following the approach proposed in
(Schneider and Zernicke, 1992). Specifically table 2
reports all the equations that can be used in (9)
to compute Ĥ1 and Ĥ2 starting from the segments
lengths (l1, l2), body mass (b) and segments circum-
ference (c1, c2). Finally, the value of Jij has been
computed as:

J11 = T1∆T2; J12 = T1T2∆;

J13 = 0; J14 = 0;

J21 = T1∆T2T3T4; J22 = T1T2∆T3T4;

J23 = T1T2T3∆T4; J24 = T1T2T3T4∆;

with Ti given as in (1) and:

∆ =









0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0









.

Similarly:

∂J11

∂q1

= T1∆
2T2;

∂J11

∂q2

= T1∆T2∆;

∂J11

∂q3

= 0;
∂J11

∂q4

= 0;

∂J12

∂q1

= T1∆T2∆;
∂J12

∂q2

= T1T2∆
2;

∂J12

∂q3

= 0;
∂J12

∂q4

= 0;

and:

∂J21

∂q1

= T1∆
2T2T3T4;

∂J21

∂q2

= T1∆T2∆T3T4;

∂J21

∂q3

= T1∆T2T3∆T4;
∂J21

∂q4

= T1∆T2T3T4∆;

∂J22

∂q1

=
∂J21

∂q2

;
∂J22

∂q2

= T1T2∆
2T3T4;

∂J22

∂q3

= T1T2∆T3∆T4;
∂J22

∂q4

= T1T2∆T3T4∆;

∂J23

∂q1

=
∂J21

∂q3

;
∂J23

∂q2

=
∂J22

∂q3

;

∂J23

∂q3

= T1T2T3∆
2T4;

∂J23

∂q4

= T1T2T3∆T4∆;

∂J24

∂q1

=
∂J21

∂q4

;
∂J24

∂q2

=
∂J22

∂q4

;

∂J24

∂q3

=
∂J23

∂q4

;
∂J24

∂q4

= T1T2T3T4∆
2.
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2 −Ĥyz
2

−Ĥxz
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ference. Values of these anthropometric measurements

have been measured on subjects. Dynamical parameters
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Abstract

Physical causality is one of the most im-
portant knowledge that human babies learn
rst after birth through interaction with the

surrounding environment. The properties of
object movement changes depending on the
situation, and so the agent should change its
prediction. This paper proposes a learning
model which predicts the movement of an at-
tended object depending on the environment
around the object. The predictor is formed by
three main layered associative modules: (a)
an environment module, which recognizes the
attended object and its surrounding environ-
ment; (b) a predictor module, which antici-
pates the movement of the attended object
depending on the surrounding environment;
(c) an attention module which implements
bottom-up and top-down attention processes.
The proposed method is applied to the robot,
and its prediction faculty and adaptability are
examined in the simulation and actual envi-
ronment.

1. Introduction

All infants are physicists. From the day of the birth,
they begin to learn the fundamental properties of the
world step by step through the interaction with the
surrounding environments. The one of the important
indices for their progress is object permanence ;
even when an attended object will be occluded from
the view by an obstacle, they can understand the
object will not be lost from the world and remain
behind obstacles. Although Piaget rstly proposed
that infants can acquire object permanence after
18 month old (Piaget, 1954), other researchers has
shown that infants can pass object permanence
task before one year old (Baillargeon et al., 1985)
(Baillargeon and DeVos, 1991). In developmen-
tal cognitive robotics, some learning models

are proposed to explain the results shown in
these experiments with more restricted facilities
(Schlesinger, 2003) (Lovett and Scasselatti, 2004).
Although an actual mechanism that enables an
infant to show these behaviors even in such a early
stage is still unknown, how such higher concepts
about the world as object continuity and impossibil-
ity can be learned autonomously is also an interesting
problem in a robot area (Fitzpatrick et al., 2008).
One of the fundamental faculties to realize the
higher concepts about the world is to model the
phenomena e ectively for appropriate prediction.
In this paper, we propose a learning model that
enables a robot to learn the prediction of the object
movement depending on the situation. For this
purpose, multiple Restricted Boltzmann Machines
(RBMs) (Hinton et al., 2006) are adopted, which
can be used for both unsupervised and supervised
learnings.

Moreover, with this learning model we treat
the problem on the relationship between attention
and learning. Attention is thought to consist of
two processes; bottom-up and top-down attention
(Knudsen, 2007). Whereas bottom-up attention is
modeled well by the intrinsic features of the input
image, top-down attention is a ected by the experi-
ence. So, what to be attended is a ected by learn-
ing, on the other hand what is learned is a ected by
attention. We set the attention level based on the
prediction error and how the attention level a ects
to the learning.

2. Situation dependent predictor
with Restricted Boltzmann Ma-
chine

2.1 Overview

In order to realize a situation dependent predic-
tor, the prediction of the attended object should be
well merged with recognition of the environment.
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Figure 1: Overview of situation-dependent predictor

This is also an interesting problem as the model
of integration of two visual pathways (where path-
way and what pathway) in the brain, where ap-
propriate self-organization for information compres-
sion and integration should be realized. For that
purpose, we apply Restricted Boltzmann Machine
(RBM) (Hinton et al., 2006) because this network
model possesses good features as a building unit to
make a larger system.

Fig. 1 shows a proposed system which consists of
4 modules; attention module, environment recogni-
tion module, predictor selector and motion predic-
tor. The attention module determines the attention
area in the environment. From the attended area,
the geometrical information of an attended object
and its surrounding images are extracted and self
organized by RBM in the environment recognition
module. The self organized information is associ-
ated with the information of the movement of the
attended object in the prediction module. Based on
the association memory feature of RBM, the predic-
tion module can reconstruct the next position of the
attended object based on the current position and
the current environmental situation. In this section,
rst, the learning algorithm of the restricted Boltz-

mann machine is explained. Second, it is explained
how RBMs are used in the environment recognition
module and prediction module. Then, the attention
module is explained

2.2 Restricted Boltzmann Machine

Restricted Boltzmann Machine (Hinton, 2007)
(Hinton et al., 2006) is a neural network consisting
of two layers, input (visible) layer and hidden layer.
There are no connections among units within each

layer. Each unit in the visible layer, vi, has a
symmetrical connection weight, wij , to each unit in
the hidden unit, hj . Each unit is activated by the
following probabilities,

P(hj = 1) =
1

1 + exp(
∑

i viwij βhj )
(1)

P(vi = 1) =
1

1 + exp(
∑

j hjwij βvi)
, (2)

where βvi and βhj are biases for activation.
The learning of RBM is processed by the calcula-

tion process called reconstruction. First, the activa-
tion lavel of the hidden layer, hj , are calculated by
the forward calculation based on the input data vi,
the connection weights wij and biases βvi with eq.
(1). Then the activation level of the visible layer, vi,
is calculated again with the activation level of the
hidden layer, hj with eq. (2). In the following, this
re-calculated activation level of the visible layer is
called reconstruction data. This calculation process
can be proceeded repeatedly. The superscript of the
unit vi and hj mentions the number of the repeated
calculation between layers. When the probabilistic
distribution of the input data and the reconstructed
data after ∞ repeats of reconstruction are p(v) and
p(v|w), respectively, the purpose of the learning is
to adjust the connection weights, wij , to minimize
the di erence of the distribution between p(v) and
p(v|w). The distance between two distributions can
be measured by the cross entropy error, which is de-
ned by the following equation,

L = 〈log(p(v|w))〉p(x) (3)

=
N

∑

i=0

p(vi) log(p(vi|w)). (4)
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The total energy of the RBM network with the
activation level, (v,h) in the both layers, can be de-
ned by the following equation,

E(v,h|w) =
∑

i,j

vihjwij . (5)

The probability of the realization of the state (v,h)
is proportional to the total energy,

p(v,h|w) ∝ e−E(v,h|w). (6)

Thus, when the function of the right side of the equa-
tion is described as f like,

f(v,h|w) = e−E(v,h|w) (7)

f(v|w) =
∑

h

e−E(v,h|w), (8)

then the probabilities of the realization of the state
(v,h) and bfv given the weights bfw can be written
with f as

p(v,h) =
f(v,h|w)

∑

v,h f(v,h|w)
(9)

p(v) =

∑

h f(v,h|w)
∑

v,h f(v,h|w)
=

f(v|w)
∑

v f(v|w)
.(10)

Applying the relation log p(v|w) = log f(v|w)
∑

v log f(v|w), the derivation of the cross entropy
error, 4, can be transformed as follows,

∂L

∂w
= 〈 ∂

∂w
log f(v|w)

∑

v

f(v|w)

Z

∂

∂w
log f(v|w)〉p(x)

= 〈 ∂

∂w
log f(v|w)

∑

v

p(v|w)
∂

∂w
log f(v|w)〉p(x)

= 〈 ∂

∂w
log f(v|w)〉p(x) 〈 ∂

∂w
log f(v|w)〉p(v|w)

= 〈 ∂

∂w
log f(v|w)〉p0

〈 ∂

∂w
log f(v|w)〉p∞

where p0 is the input data (0 th reconstruction
data) and p∞ is the ∞-th reconstruction data. For
actual calculation, instead of p∞, 1 st reconstruc-
tion data, p1, is used for minimization. Then, the
derivation can be simpli ed as

〈 ∂

∂wij
log f(v|wij)〉p0

〈 ∂

∂wij
log f(v|wij)〉p1

= 〈 ∂

∂wij

∑

i,j

vihjwij〉p0
〈 ∂

∂wij

∑

i,j

vihjwij〉p1
(11)

= 〈vihj〉p0
〈vihj〉p1

(12)

Thus, the update learning rule for minimizing the
cross entropy error can be derived as

wij = ε(v0
i P(h0

j = 1) P(v1
i = 1)P(h1

j = 1)).
(13)

In the same way, the learning rule for biases can be
derived as

βhj = ε(P(h0
j = 1) P(h1

j = 1)) (14)

βvi = ε(P(v0
i = 1) P(v1

i = 1)) (15)

In the actual learning, the input data are divided
into several groups and the parameters are updated
group by group to avoid the over learning. Moreover,
we added the additional of learning rule to limit the
activation rate of each unit. This sparseness con-
straint seems to be important to describe the input
data with more compact patterns of activations in
hidden layers (Lee et al., 2008). The convergence of
the learning is evaluated by the total error between
input data and the reconstruction data,

err = v0
i P(v1

i = 1). (16)

After learning, the reconstruction process can be
used for reconstructing complete data set from the
incomplete data. This feature can be used for associ-
ation of the given multiple data sets. Moreover, when
the number of the units in the hidden layer is less
than that in the visible layer, the extraction of the
important features of the input data can be expected.
Hinton stresses that this characteristic of RBM fa-
vorable for avoiding local minima in learning of deep
layered network. Thus, RBM has both features of su-
pervised and unsupervised self-organization learning
properties.

2.3 Environment Module

An object will change the movement depending on
the environment where the object is put. The prop-
erties of the movement will be a ected by the shape
of the object. For example, we expect a ball shape
will be expected to move easily but not for a square
object. And the same object will change its move-
ment depending on the pathway the object is put on.
The environment module categories visual informa-
tion of an attended object and its surroundings.

To extract the geometrical information from the
images of an attended object and its surroundings,
the results of the gabor lters of these images are
input to RBM. The result images of the gabor lters
of ψ = [0◦, 45◦, 90◦, 135◦] are segmented into 5 × 5
units. In each unit, the pixel values are summed and
normalized to the attended area. The activation level
of the j-th unit, Ij , is determined by the normalized
summed value aj and some threshold,

Ij =

{

1 (aj > th)

0 (aj th)
. (17)

The input to the environment module RBM, v<env>,
is the combination of the vectors of the gabor lter
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results for the object image, I<obj>, and the vectors
of the gabor lter results for the surrounding image,
I<around>,

v<env> = (I<obj>, I<around>). (18)

Fig. 2 shows the ow chart of the processing.
After learning, the activation pattern in the hid-

den layer, h<env>, is expected to describe self orga-
nized information of the input images. Thus, these
information is used in the prediction module for pre-
diction of the movement of the attended object.

                    

 

Figure 2: The environment module

2.4 Prediction Module

Fig. 3 shows the schema of the prediction module.
The RBM in prediction module associates the cur-
rent movement information S(t), the previous move-
ment information S(t 1), and the situation infor-
mation h<env>. The position information consists of
the position and the velocity of an attended object,

S(t) = (x0, x1, ..., xn−1, y0, y1, ..., ym−1,

dx0, dx1, ..., dx2n−1, dy0.dy1, ..., dy2m−1).

When the image size is W ×H and it is divided into
n × m, and the coordinates of the attended object
are (x, y), then the position nodes are determined by
the following equations,

xi =

{

1 ( x
W/n i < x

W/n + 1)

0 else
(19)

and

yj =

{

1 ( y
H/m j < y

H/m + 1)

0 else
. (20)

When the shift of the attended object between ob-
served steps is (dx, dy), the velocity nodes are deter-
mined by

dxi =

{

1 ( dx
W/n + n 1 i < dx

W/n + n)

0 else
(21)

and

dyj =

{

1 ( dy
H/m + m 1 j < dy

H/m + m)

0 else
. (22)

In order to realize the prediction in the various
time scales and spatial frames, several RBM with
various kinds of time scale and spatial segmentation
sizes are prepared. Among them, the appropriate
predictor is selected based on the reliability of the
predictors. The reliability of i-th predictor, ci, is
calculated based on the hidden layer of the environ-
ment recognition module, h<env>, as

ci =
∑

j

ws
ij × h<env>

j . (23)

The connection weights, ws
ij , is learned based on the

following Hebbian learning,

ws
ij = ε(e− ri × h<env>

j ) (24)

where ri is the prediction error of the movement in
i-th prediction module, ε is the learning rate. The
activation level of each RBM, a<RBM>

i , is calculated
based on the reliability ci,

a<RBM>
i =

1

1 + exp(
∑

i ci)
(25)

and the RBM that has the maximum value is selected
as the predictor under the current situation.

2.5 Attention Module

We hypothesized that attention consists of three pro-
cesses; catch, retain and release. First, in the catch
process, the attended point is selected based on the
saliency (Itti et al., 2003). For that purpose, the
saliency map is calculated with regard to various
image features such as intensity, color, motion, etc.
Once the attended point is decided, the attended ob-
ject area is evaluated as the set of pixels that have
the same color of attended point. Then, the attended
object area is segmented and used for the template
for pattern matching. The object are is normalized
and binarized as the input for the attention module,
I<obj> (Fig. 2). The surrounding image of the at-
tended object whose size is the half of the camera im-
age is normalized and binarized as the input for the
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Figure 3: The prediction module

attention module, I<around>. The attention point is
retained for the learning until the trigger for releas-
ing attended point is given. For e ective learning,
it is supposed that the attended points whose move-
ment can be predicted completely should be released.
The points whose movement are random should also
be released earlier because such points may well be
noise. On the other hand, the points whose move-
ment can be partly predicted should be retained long
for learning more. For that purpose, we compared
two kinds of functions that decide the probabilities
to release the attention points.

attention1 =
enerror e1−nerror + e + 1

2e0.5 + e + 1
(26)

attention2 =
e1−nerror 1

e 1
(27)

where nerror is the rate of the number of the predic-
tion modules that fails to predict. The graphs are
shown in Figs. 4. The attention is released when the
above attention level becomes less than some thresh-
old.

(a) Attention function1 (b) Attention function2

Figure 4: Attention function

3. Experiments

3.1 Learning Prediction without attention

To validate the prediction faculty, the proposed sys-
tem is applied to the real robot. Fig. 5 shows the
robot FK used in the experiment. Although this
robot has two IEEE 1394 cameras and 2 degrees of
freedom (pan and tilt) to move the camera, only the
right camera is used with eye position xed. The
camera image is captured with 33 [frames/sec].

Figure 5: robot FK

To validate the prediction faculty in various situ-
ations, three kinds of situations are prepared; a ball
on the holizontal rail, a ball on the vertical rail and
a ball in the pendulum 6. In each situation, 4 tri-

(a) situation 1

(b) situation 2

(c) situation 3

Figure 6: Situations of experiments

als are recorded, each of which has about 90 steps.
For the prediction module, 6 RBMs are prepared (2
kinds of segmentations (40×40, 10×10) and 3 kinds
of time steps (5, 10, 20 steps)). The numbers of the
visible and hidden units of the environment module
are 200 and 50, respectively. The numbers of the vis-
ible and hidden units of the prediction modules are
368 and 92 for the segment size 40 × 40, 128 and 32
for the segment size 10×10. The attended area to be
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Figure 7: Prediction Error without attention

attended is given as the image template (orage ball)
by the designer in this experiment.

Fig. 7 shows the learning error of all RBMs. The
learning of each RBM converges within 100 learning
steps. The examples of the prediction after learning
is mentioned in Fig. 8. These are the predictions
of RBMs that have 10 × 10 segments and 5, 10, 20
prediction time steps (20 step prediction is shown
only in every 20 step).

  

(a) Step 0

  

(b) Step 10

  

(c) Step 20

  

(d) Step 30

  

(e) Step 40

  

(f) Step 50

  

(g) Step 60

  

(h) Step 70

  

(i) Step 80

Figure 8: Examples of prediction of the movement after

learning

3.1.1 Supplemental Learning

To validate the faculty of the predictor in additional
learning, after learning in one situation (Fig. 9(a)),
additional data in another situation (Fig. 9(b)) is

(a) Situation 1

(b) Situation 2

Figure 9: The training data for supplemental learning

given to the network. For each situation, 3 trials
(each trial consists of 68 steps) are recorded for train-
ing data. The other conditions are the same as the
previous subsection. The data of second situation
is added to the training data of the situation net-
work after the 250 steps of learning in the rst sit-
uation. Fig. 10 shows the time courses of the av-
eraged error rate per one node through the learning
process (only 2 of 6 predictors are shown). Around
the 250-th learning steps, the error rate rises when
new data is added to the training data. However,
in the following 100 steps, the error rate decreases
to around 0.3 indicating that the network success-
fully represent both the new and old situation. Fig.

   





































Figure 10: The error rate per one node in the supple-

mental learning

11 shows the predicted position of the attended ob-
ject before and after the supplemental learning. (a)
Before the supplemental learning, the robot predicts
the attended ball will go through the wall because he
does not experienced such kind of situation (squares
are the predicted positions in the next 5, 10 and 20
steps. The big and small squares are the predic-
tion in 10× 10 and 40× 40 segments.). (b) After the
supplemental learning, the robot can make appropri-
ate predictions depending on the situations. Before
the supplemental learning, the robot predicts that
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the ball will move through the wall in right direction
as before (b). After the supplemental learning, the
robot can predict that the ball will stop at the wall
(c).

  

   



(a) Prediction before

learning

  

   



(b) Prediction after learn-

ing (situaton 1)

  

   



(c) Prediction after learn-

ing (situation 2)

Figure 11: Prediction of the ball position before and after

the supplemental learning

3.2 Learning Prediction with Attention

In the experiments of previous subsection, the object
to be attended is given by the designer in advance.
In order for a robot to learn the physical causality
autonomously, it is important to implement an at-
tention control system appropriately. For this pur-
pose, we applied the attention module to the same
situations as the experiments explained in the pre-
vious subsection. Each situation consists of 3 tri-
als that have 90 steps. For the prediction mod-
ule, 6 RBMs are prepared (2 kinds of segmentations
(40× 40, 10× 10) and 3 kinds of time steps (5, 10, 20
steps)) for the prediction modules.

Figs. 12 shows the time course of the error rate in
the learning procedures with the attention function 1
(Fig. 12 (above)) and the attention function 2 (Fig.
12 (below)). Whereas the learning is not stable with
the attention function 1, the learning with the atten-
tion function 2 converges to some stable state. This
is because with the attention function 1 the robot
easily change its attention to another point (often
shiny noise point in the environment other than the
object) when the rst part of the movement can be
learned. Figs. 13 show the timing when the robot
changes its attention in the middle of the learning
procedure for situation 3 with the function 1 (above)
and with the function 2 (below). In these graphs, the
gray line indicates the rate of the prediction failure
modules, the black line indicates the attention level
(calculated by eq. (26) and eq. (27)), and the dashed

line indicates the threshold that the robot changes
its attention (the arrows indicate the timing when
the robot changes its attention). With the function
1, the robot predicts the rst part of the movement
successfully and loses its attention easily because the
prediction is successfully done. This makes the learn-
ing unstable. On the other hand, with the function
2, the robot can keep its attention once the appro-
priate attention point (the object) is found. And the
stable learning data can be obtained.

  
















 





     













    

  






 

























    

Figure 12: Prediction error based on the attention mod-

ule with the function 1 (above) and the function 2 (below)













    


    











Figure 13: Attention level and attention changes based

on the attention module with the function 1 (above) and

the function 2 (below)
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4. Discussion

In this paper, we proposed a layered associative net-
work that can predict the movements of the observed
object depending on the surrounding situation. The
higher abstract concept such as object permanence
can be acquired through the learning of many con-
crete phenomena in the real world. The proposed
network could be extended to more higher represen-
tation of the world. Fig. 14 shows the result of the
principle component analysis of the activation pat-
terns in the hidden layer of the prediction module
(the image segments are 10 × 10 and the prediction
time step is 5). This graph shows the activation pat-

-5

0

5

P
C
2

1050-5

PC1

situation 1

situation 2

situation 3

Figure 14: Principal component analysis of the activation

patterns of hidden layer in prediction module

terns can be self-organized depending on the situa-
tion. So, the information of the activation patterns
can be used to discern the states such as The ball
is goes to left on the horizontal line. . This implies
the possibility to construct higher abstract concept
based on the self-organization of lower data through
the bottom-up approach.

Object permanence is thought to be closely re-
lated to memory. To realize an object does not dis-
appear behind an obstacle and will appear again, an
agent should recognize that the reappeared object
is the same one as the previous one. In the pro-
posed network, if the attended object disappears be-
hind some obstacle, the robot could not retain its
attention because the robot will release its atten-
tion based on the attention level function 2. How-
ever, if the prediction module that enables long term
prediction is available, the robot can retain its at-
tention and relate the object behavior during disap-
pearing and reappearing. The key faculty for this
learning is how long working memory can record the
series of events and how the prediction module will
learn from the events in the working memory. In
fact, it is reported that the working memory abil-
ity of infants is enhanced from 7.5 months (2 secs)
to 12 months (12 sec) (Schwartz and Reznick, 1999)
(Reznick et al., 2004). We are now conducting the

experiments to relate the prediction ability of a dis-
appeared object and the time length of memory.
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Abstract

While the ability to learn on its own is an
important feature of a learning agent, an-
other, equally important feature is ability to
interact with its environment and to learn in
an interaction with other cognitive agents and
humans. In this paper we analyze such in-
teractive learning and define several learning
strategies requiring di↵erent levels of tutor in-
volvement and robot autonomy. We propose a
new formal model for describing the learning
strategies. The formalism takes into account
di↵erent levels and types of communication
between the robot and the tutor and di↵erent
actions that can be undertaken. We also pro-
pose appropriate performance measures and
show the experimental results of the evalua-
tion of the proposed learning strategies.

1. Introduction

An important characteristic of a robot that operates
in a real-life environment is the ability to expand its
current knowledge. The system has to create and
extend concepts by observing the environment – and
has to do so continuously, in a life-long manner.

As an example of such a learning framework, we
need look no further than at the successful appli-
cation of continuous learning in human beings. As
humans, we can learn, for example, a new visual con-
cept (e.g., an object category, an object property, an
action pattern, an object a↵ordance, etc.) by en-
countering a few examples of one. Later, as we come
across more instances, di↵erent to the original ex-
amples, we not only recognise them, but also update
our representation of learned visual concepts based
on the salient properties of the new examples and
without having visual access to the previous exam-
ples. In this way, we update or enlarge our ontology
in an e�cient and structured way by encapsulating
new information extracted from the perceived data,
which enables adaptation to new visual inputs and
the handling of novel situations we may encounter.

Since humans are social beings this learning often
takes place not in isolation, but rather in communi-
cation with other people. This communication can
facilitate learning by exposing the knowledge that
other possess also to the learner. It is very important
for a robot, which is supposed to operate in a real
world environment, to possess similar capabilities as
well. The robot should be able to learn by interacting
with the environment and with other knowledgable
cognitive systems (e.g., a tutor), which may facilitate
the learning process and make it robust and reliable.

In this paper we focus on such interactive continu-
ous learning, where the robot is learning and contin-
uously updating its knowledge autonomously or in a
dialogue with a tutor. With respect to this, several
learning strategies can be used; the robot can con-
tinuously learn while communicating with the tutor
with di↵erent levels of tutor involvement and di↵er-
ent levels of robot autonomy.

For performing a thorough analysis and evaluation
of various learning strategies, it is necessary to for-
mally describe the learning process and defined per-
formance metrics. In this paper we propose such a
formalism for specifying di↵erent learning strategies.
In the proposed formal framework we also define
four learning strategies ranging from tutor-driven to
tutor-unassisted learning.

The paper is organised as follows. In the next
section we first describe the related work. In Sec-
tion 3. we then describe four learning strategies and
in Section 4. the general formal model of learning
strategies. This is followed by experimental evalua-
tion of the presented learning strategies. The paper
concludes with a final discussion and outlook.

2. Related work

A tutor’s involvement by interaction plays an impor-
tant role in the learning process in cognitive agents.
Studies of human infants, for example (Pea, 1993),
indicate that being able to exploit the expertise of
others is a critical part of learning. Another point is
the capability of the infants to take lead in the inter-
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action, which is a foundation for many situated learn-
ing activities. Weng et al. (Weng et al., 2001) pro-
pose that similar measures should be undertaken in
machine learning scenarios, in which the tutor should
mentally rise the developmental robot through real-
time interaction. This assumption is supported in
the theory of cognitive development proposed by Vy-
gotsky (Vygotsky, 1962), which states that social in-
teractions are of essential importance for the devel-
opment of individual intelligence. Building on a sim-
ilar assumption, Thomaz (Thomaz, 2006) casts the
machine learning problem as a strongly involved in-
teraction between the human and the machine. As a
feature of strong interaction (Thomaz, 2006) propose
that the tutor has to have a level of insight into what
the learner knows and which parts of the knowledge
are ambiguous – the learner should be transparent to
the tutor. In that respect, an involved interaction as
a dialogue based learning scenario was also presented
by Roy et. al (Roy and Pentland, 2002, Roy, 2002).
Their system in (Roy and Pentland, 2002) was de-
signed to learn word forms and visual attributes from
speech and video recordings, and subsequently, Roy
extended this work for generating spoken descrip-
tions of scenes (Roy, 2002).

Researchers have dealt with various levels of
tutor involvement in the process of learning in
machines. At one extreme is an example in
which the tutor is absent and the agent has to
learn on its own starting from a very small or no
prior knowledge, e.g., (Mugan and Kuipers, 2008,
Oudeyer and Kaplan, 2004). However, allowing
learning from demonstration (Argall et al., 2009)
or learning by imitating (Schaal, 1999) the tu-
tor can drastically reduce the search space for
the agent’s task and speed up learning. Ex-
amples of implicit or explicit learning from a
passive observation can be found, for exam-
ple, in the works of (Kuniyoshi et al., 1994,
Billard and Dautenhahn, 1999, Lieberman, 2001).
Another level of tutor’s involvement is teaching
by directly influencing the the actions of the ma-
chine. Such an example is when user biases the
action selection in the machine (Maclin et al., 2005)
or to allow direct control of robot’s actions to
supervise the process of reinforcement learn-
ing (Smart and Kaelbling, 2002). Kaplan et
al. (Kaplan et al., 2001) explored animal train-
ing techniques to teach a robot to perform
complex tasks. An example where the tutor
plays an oracle was explored by Schohn and
Cohn (Schohn and Cohn, 2000) – in that scenario,
the agent provides some level of transparency by
identifying the relevant examples and querying
the tutor for the required labels. Allowing the
robot to actively express its uncertainty, or a gap
in the knowledge, was explored in the ”Ask for

Help” framework (Clouse, 1996) and, for exam-
ple, (Nicolescu and Mataric, 2003). An approach to
reinforcement learning which can learn from tutor’s
feedback was presented in (Knox and Stone, 2008).

Learning in cognitive robots can therefore be de-
scribed in terms of di↵erent levels of tutor involve-
ment as well as levels of learner’s responsiveness and
learner’s transparency. As noted above, various re-
searchers have dealt with scenarios with various lev-
els of the tutor-learner interaction, leading to di↵er-
ent learning strategies. With this respect, the closest
related work is (Chernova and Veloso, 2009), where
the authors propose and evaluate similar learning
strategies to those discussed in this paper (although
in a di↵erent learning domain). The main contribu-
tion of this paper, however, goes beyond the def-
inition of the learning strategies; we also propose
a formalism for modeling these strategies. In fact,
also the learning strategies like those presented in
(Chernova and Veloso, 2009) could be modeled with
the formal model presented here. This is also the
main goal of our work; to introduce a formalism that
would enable simple and e�cient definition, evalua-
tion and comparison of di↵erent learning strategies.

3. Learning strategies

The interaction between the tutor and the robot
plays an important role in a continuous learning
framework. The goal of the learning mechanism is
to continuously learn and update the acquired con-
cepts, i.e., to find associations between the words
spoken by the tutor (and related amodal concepts)
and features, which are automatically extracted from
the observations. Such a continuous learning frame-
work should communicate with the tutor, perform
recognition, and update the representations accord-
ing to the current learning strategy. In this section
we define several learning strategies which alter the
behaviour of the system and require di↵erent levels
of tutor involvement.

In the core of any learning strategy is a learning

algorithm that actually builds and updates the rep-
resentations. Before we proceed with the definition
of the learning strategies, let us introduce several re-
quirements for the learning algorithm.

Most importantly, the learning algorithm has to
be incremental; the representation, which is used
for modeling the observed world, has to allow for up-
dates when presented with newly acquired informa-
tion. This update step should be e�cient and should
not require access to previously observed data, while
still preserving the previously acquired knowledge.

In addition, in continuous learning scenarios the
noise in the input data has a detrimental e↵ect on
the learnt representations, especially when the robot
learns autonomously. If, for example, the recogni-
tion algorithm fails at some point to correctly inter-
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pret the visual scene and erroneously updates the
current knowledge, the models of the concepts tend
to degrade and the performance of the system will
typically decrease severely. However, in interactive
settings the tutor can help the robot to recover from
the errors through interaction, by, e.g., indicating to
the robot that its belief about a certain concept is
wrong. The system should be then able to unlearn,
i.e. to update the representation by considering the
wrongly classified sample as a negative training ex-
ample. Unlearning step may lead to the correction
of the current representation, which can improve the
performance considerably.

Finally, it is obvious that the system is supposed
to have a certain level of self-understanding; it
should be able to estimate whether its current knowl-
edge su�ces to interpret the current scene, or it
should ask the tutor for help. Therefore, it should
have a recognition capability, i.e., the ability to in-
terpret the current observation to some extent. And
even more importantly, the system should be able to
evaluate the reliability of this recognition process.

We therefore assume that the learning algorithm,
which is used in the continuous learning framework,
fulfills the criteria mentioned above.

We define a learning strategy as a common
strategy of the tutor and the robot that specifies the
behaviour of the robot and the tutor in the contin-
uous learning process. It specifies when the robot
updates its knowledge autonomously and how and
when the tutor and the robot communicate in order
to extend the robot’s knowledge. According to this
definition and considering di↵erent levels of interac-
tion between the tutor and the robot, various learn-
ing strategies are possible. Here we identify four such
strategies:

• Tutor-driven. The tutor drives the learning by
describing the observation and giving all avail-
able information to the robot. The communi-
cation is one-directional, the learning process is
completely controlled by the tutor.

• Tutor-supervised. The robot establishes trans-
parency; the tutor assesses the robot’s knowl-
edge and detects its ignorance. When the robot
fails to correctly interpret the current observa-
tion, the tutor provides the correct information,
which helps the robot to update or unlearn the
current representations accordingly.

• Tutor-assisted. The robot tries to interpret the
current observation. If it succeeds to do this reli-
ably, it updates the current model, otherwise asks
the tutor for the correct interpretation. The tu-
tor therefore gives the information to the robot
only when asked for assistance.

• Tutor-unassisted. The system updates the

model with the automatically obtained interpre-
tation of the visual input. No assistance from
the tutor is required. There is no communication
between the tutor and the robot.

The dialogue in the first two learning strategies
is initiated by the tutor, while in the second two
cases the robot takes the initiative. These four
learning strategies range across the entire spectrum
of di↵erent levels of the tutor involvement and the
robot’s autonomy. In Tutor-driven mode the tu-
tor completely drives the learning process, in Tutor-
supervised mode he intervenes only when necessary,
in Tutor-assisted mode only when he is asked for,
and in Tutor-unassisted mode even never. On the
other hand, the autonomy of the robot increases from
Tutor-driven mode, where the robot does not influ-
ence the learning process, to Tutor-unassisted mode,
where it completely autonomously controls the learn-
ing. This is also depicted in Fig. 1.

The spectrum of di↵erent learning modes is of
course not discrete as presented here; it is continuous
and one could define additional learning strategies
with similar properties. It is also possible to com-
bine di↵erent learning strategies, to execute them in
a sequence and to switch between them when neces-
sary. In practice, the learning strategy should change
over time, adapting to the current level of knowl-
edge and complexity and novelty of the environment
the robot is currently situated in. We believe, how-
ever, that the presented four learning strategies span
across the entire space of possible learning strategies
and cover a major part of its variability.

Figure 1: Learning strategies.

4. Formal model

In the previous section we have conceptually de-
scribed a few possible learning strategies. Here we
present a general formalism, which can be used to
formally define these or many other learning strate-
gies.

We will limit our analysis on the continuous learn-
ing scenarios, in which a robot observes a scene and
learns new concepts through interaction with a tutor.
This interaction can be quite simple or very complex;
di↵erent learning strategies employ di↵erent levels of
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communication. We assume that the robot and the
tutor can establish the common ground; they have
all necessary communication capabilities, they ob-
serve the same scene, and in the dialogue they refer
to the same object.

The robot and the tutor are involved in a con-
tinuous and interactive learning process; the robot
continuously observes objects, it tries to recognize
them and learn something new about them. Every
learning step therefore starts with the robot trying
to interpret the current scene. It tries to recognize all
the concepts it currently knows. Based on the classi-
fication confidence (see Fig. 2), the robot can assign
soft labels when trying to determine whether the
current observation is indicative of a given concept
or not:

• ‘Yes’ (YES): The recognition confidence is very
high, the robot reliably classifies the current ob-
servation as being an instance of a particular con-
cept.

• ‘Probably yes’ (PY): The recognition confi-
dence is relatively high, however the robot is not
certain about its current interpretation.

• ‘Probably no’ (PN): The recognition confidence
is relatively low; the current observation probably
does not indicate the particular concept.

• ‘No’ (NO): The recognition confidence is very
low, therefore the robot reliably classifies the cur-
rent observation as not being an instance of a
particular concept.

• ‘Don’t know’ (DK): The recognition was not
su�ciently reliable to determine the answer.

• ‘Unknown’ (UK): The robot has not yet encoun-
tered the certain concept it was asked about.

Based on the output of the classifier and as in-
structed by the chosen learning strategy, one of the
following four actions follows:

• Do nothing. The robot does not update its cur-
rent knowledge nor does request an interaction
with the tutor.

• Autonomously update. The robot updates
the current knowledge with the information au-
tonomously inferred from the current observation
without involving the tutor.

• Tell. The tutor gives the correct information
about the current observation to the robot.

• Ask. The robot asks the tutor for clarifica-
tion about the current observation and the tutor
replies with the correct answer.

In the latter three cases an update of the current
knowledge follows (either based on the automatically
extracted information or on information obtained by
the tutor). Two di↵erent kinds of update are pos-
sible:

• Update with a positive example. The robot
updates its current knowledge by integrating the
positive training sample into its current represen-
tation of the particular concept.

• Unlearn with a negative example. The robot
unlearns its current knowledge; based on the
given negative example, it corrects the current
representations not to model this negative exam-
ple.

To fully describe the learning strategy we also need
to define the intensity of communication between the
robot and the tutor. We define three such commu-

nication levels:

• Ignoring. The tutor ignores the robot’s output;
the state and performance of the robot do not
influence the tutor’s behavior.

• Listening. The tutor listens to the robot and
correctly answers with ‘yes’ or ‘no’ when being
asked a polar question.

• Transparency facilitated assessment. The
robot establishes transparency and the tutor is
able to assess the robot’s current interpretation
of the observation.

Now, let us denote the above mentioned four ac-
tions with the following signs: ‘/’ for ‘do nothing’,
‘U’ for ‘auto-update’, ‘T’ for ‘tell ’, and ‘A’ for ‘ask’.
In addition, with a subfix next to these signs we will
denote an update with positive example with the plus
sign (‘+’) and an unlearning request with the mi-
nus sign (‘-’). For instance, ‘U+’ means that the
system will automatically update the current knowl-
edge with the information inferred from the current
observation, while ‘A�’ means that the robot will ask
the tutor for clarification, the tutor will reply with a
negative answer and the robot will unlearn its cur-
rent knowledge accordingly. Similarly, let us denote
the communication levels with ‘ign’ (ignoring), ’lst’
(listening), and ’tfa’ (transparency facilitated assess-
ment).

To fully describe a learning strategy, we need to
define what will happen if the robot correctly or in-
correctly interprets the current observation with re-
spect to all known concepts. Therefore, we need to
define the action that will be undertaken depend-
ing on the robot’s autonomous interpretation of the
scene (soft label sl that is autonomously assigned
for a particular concept). We assume that the tutor
is omniscient and always gives the correct informa-
tion to the robot; therefore the tutor’s actions will
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also depend on the ground truth data (gt), which
tells if the observation is an instance of the particular
concept or not.

Now, a learning strategy can be defined as a 13-
tuple LS:

LS = [act
sl,gt

, cl] ,where (1)
sl 2 {Y ES, PY, PN, NO, DK,UK}
gt 2 {yes, no}

act·,· 2 {/, U+, U�, T+, T�, A+, A�}
cl 2 {ign, lst, tfa}

Note that act
sl,gt

denotes 12 elements (2 ⇥ 6 com-
binations of sl and gt, i.e., act

Y ES,yes

, act
Y ES,no

,
act

PY,yes

, etc.1). This vector exactly specifies what
will happen in certain situations. When the robot
observes a new observation it tries to determine
whether it belongs to a certain concept or not, and
assigns a soft label (sl) as described above. This la-
bel is then together with the known ground truth (gt)
used to index in the vector LS; the obtained action
act

sl,gt

exactly specifies which action (or sequence of
actions) will be undertaken.

Figure 2: Parametrisation of learning strategies.

To demonstrate this formalism, let us for-
mally define the four learning strategies pre-
sented in the previous section (see also Fig. 3):
LS

TD

= [T+, /, T+, /, T+, /, T+, /, T+, /, T+, /, ign]
LS

TS

= [U+, T�, U+, T�, T+, /, T+, /, T+, /, T+, /, tfa]
LS

TA

= [U+, U+, A+, A�, A+, A�, /, /, A+, A�, T+, /, lst]
LS

TU

= [U+, U+, U+, U+, /, /, /, /, /, /, T+, /, ign]
In Tutor-driven learning mode, the tutor ignores

the output of the robot (ign); it always gives the
robot the correct (positive) information about the
current observation (T+). In Tutor-supervised mode,
the tutor observes the robot and assesses its current
knowledge (tfa). The tutor lets the robot automat-
ically update the current knowledge (U+), when its

1
With capital letters (e.g., Y ES), we denote the label au-

tonomously inferred by the robot, while with small letters

(e.g., yes) we denote the actual (ground truth) label for a

particular concept.

interpretation is correct, or he corrects the robot,
when its interpretation is incorrect by telling it the
correct information (T� or T+). In Tutor-assisted
mode the tutor listens to the robot (lst), which au-
tonomously decides either to update the knowledge
automatically (U+), when it trusts to its recognition
result, or to ask the tutor for help, when the recogni-
tion was not reliable. In the latter case, the tutor re-
sponds with ‘yes’ (A+) or ‘no’ (A�) according to the
ground truth label, which in turn enables the robot
to update or unlearn its current knowledge. Finally,
in the Tutor-unassisted learning, the robot only re-
lies on its current recognition abilities and does not
ask the tutor for help. The robot is therefore ignored
by the tutor (ign) and updates its current knowledge
autonomously (U+).

Figure 3: Formal definition of four learning strategies.

Such learning formalism allows us to formally de-
fine evaluation measures. Instead of standard recog-
nition rate we propose to use a recognition score,
which rewards successful recognition (true positives
and true negatives) and penalizes incorrectly recog-
nised concepts (false positives and false negatives) by
taking into account soft labels. The scoring rules are
presented in Table 1; it shows how many points (-1
to 1) the system is rewarded with for each of the an-
swers given in the first row, depending on the correct
answer as given in the first column.

Table 1: Scoring table.

YES PY PN NO DK UK
yes 1 0.5 -0.5 -1 0 0
no -1 -0.5 0.5 1 0 0

The recognition score thus measures how suc-
cessfully the robot recognizes the learned concepts
(therefore, how successful the learning was). How-
ever, in interactive learning scenarios another crite-
rion is also important; the tutoring costs. Obvi-
ously, one would prefer that the robot learns au-
tonomously as much as possible, without involving
the tutor too frequently. During the learning pro-
cess di↵erent types of tutoring costs may occur (in
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di↵erent learning strategies):

• C
inf

: costs of providing some information to the
robot.

• C
ans

: costs of answering a polar question to the
robot.

• C
ign

: costs of ignoring the robot’s output.

• C
lst

: costs of listening to the robot.

• C
tfa

: costs of assessing the current robot’s knowl-
edge.

Let us suppose that at a particular learning step
the tutor gave N

inf

concept labels about the correct
observation to the tutor and answered N

ans

polar
questions. Now we can define the overall tutoring
costs at that particular learning step as

TC = N
inf

C
inf

+ N
ans

C
ans

+ C
cl

(2)

where cl is one of three communication levels as de-
fined above.

The values of the parameters C⇤ depend on the ac-
tual costs that occur during the interactive learning.
In this paper we use the values presented in Table 2.
We set the cost of assessing the robots knowledge

Table 2: Tutoring costs.

C
inf

C
ans

C
ign

C
lst

C
tfa

1 .25 0 .25 2

high, since this is not a trivial task for the tutor.
If, for instance, the robot would establish the trans-
parency by verbalizing its current beliefs, the tutor
would just have to listen to it and the cost of assess-
ing the knowledge would be lower, i.e., C

tfa

= C
lst

.

5. Experimental results

For performing large scale experiments and evaluat-
ing di↵erent learning strategies we have developed
Interactive Continuous Learning Simulator, which
implements the formal model of learning strategies
presented in the previous section. This simulation
environment uses as observations the features that
were automatically extracted from the previously
captured, automatically processed and manually la-
beled real data; the tutor is replaced by an omni-
scient oracle, which has the ground truth data avail-
able. The simulator enables large scale experiments
and a thorough evaluation and comparison of di↵er-
ent learning methods and strategies.

We performed a number of experiments to eval-
uate di↵erent learning strategies on di↵erent learn-
ing domains. Here we present the results of the
experiment where the goal was to learn basic vi-
sual attributes like colour and shape by observing

a set of everyday objects (some of them are de-
picted in Fig. 4(a)). Six visual attributes were
considered; four colours (red, green, blue, yellow)
and two shapes (elongated, compact). The database
that we used for learning contains 500 images. 400
images were used to incrementally learn the repre-
sentations of six visual properties, while the rest
100 of them were used as test images. We re-
peated the experiment for 100 runs by randomly
splitting the set of images into the training and test
set and averaged the results across all runs. In all
the experiments we used the extended algorithm for
incremental learning that we have previously pro-
posed (Skočaj et al., 2008, Kristan et al., 2009).

During the experiment, we kept incrementally up-
dating the representations with the training images
using di↵erent learning strategies as defined in the
previous section. At each step, we evaluated the
current knowledge by recognising the visual prop-
erties of all test images. The learning performance
was evaluated using two above defined performance
measures: recognition score and tutoring costs.

Figs. 4(b,c) show the evolution of the learning per-
formance over time for all four learning strategies.
First thing to note is that the overall results improve
through time. The growth of the recognition score
is very rapid at the beginning when new models of
newly introduced concepts are being added, and still
remains positive even after all models are formed due
to refinement of the corresponding representations.

Tutor-driven and Tutor-supervised learning yield
similar recognition score; they almost achieve the
perfect score (600 in this case). Tutor-supervised
learning performs slightly better, since it sooner
achieves better results. This is somehow expected,
since in this case the tutor corrects the robot when
necessary and the robot unlearns the erroneous rep-
resentations. The inherent problem of any continu-
ous learning framework, which involves autonomous
updating of the knowledge, is propagation of errors.
The tutor supervision e�ciently helps the robot to
recover from this errors, if the robot transparency
has been achieved. The error recovery is in this
experiment less e↵ective in the Tutor-assisted case.
The errors are in this case detected by the robot
(and not by the tutor). Obviously, this error detec-
tion is not so e�cient, therefore the recognition score
is lower. In this experiment, Tutor-unassisted learn-
ing did not perform well; without su�ciently good
initial knowledge it was not able to improve without
any assistance from the tutor.

We also have to take into account the tutoring
costs that occur during the learning. In Tutor-driven
learning mode they are almost constant; the tutor al-
ways gives all the information about the current ob-
ject, which is available. The costs of Tutor-assisted
learning are significantly lower. The robot keeps ask-
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Figure 4: Experimental results: (a) Seven everyday objects from the database. (b) Evolution of Recognition Score, (c)

Tutoring Costs. Note the logarithmic scale along abscissa.

ing the tutor only at the beginning of the learning
process; after its knowledge gets improved the num-
ber of questions drops and most of the costs relate
to the fact that the tutor has to listen to the robot
and await for its questions. The costs of Tutor-
supervised learning are relatively high, since in this
experiment we use the settings presented in Table 2,
which assume that it is relatively expensive to asses
the robot’s knowledge. In addition to that, at the
beginning there is a lot of communication between
the tutor and the robot, which again drops when the
models of the concepts get stabilized. If the robot
establishes its transparency by verbalizing its beliefs
about current observations, the costs of assessing the
knowledge are significantly lower, and the overall tu-
toring costs significantly decrease (the strong dashed
line in Fig. 4(c)), making Tutor-supervised learning
more e�cient than the Tutor-driven. This holds true
also in practice; it is more convenient (and e↵ective)
for the tutor just to listen and correct the learner
occasionally than to continuously giving it new in-
formation.

6. Conclusion

In this paper we have introduced a new formal model
for formalizing learning strategies. We define a learn-
ing strategy as a common strategy of the tutor and
the robot that specifies the behaviour of the robot
and the tutor in the continuous learning process.
The formalism takes into account di↵erent levels and
types of communication between the robot and the
tutor and di↵erent actions that can be undertaken.
By specifying these actions an communication levels,
the learning strategy can be uniquely defined.

In general, it is very di�cult to objectively
compare di↵erent (incompatible) learning processes;
the presented formalism makes this comparisons
straightforward. This will allow us to analyse di↵er-
ent learning strategies, to e�ciently combine them

and to find a way how to exploit the properties of
the individual strategy best.

In addition, we introduced four learning strategies
that span across the entire space of possible learning
strategies and cover a major part of its variability.
They range across the entire spectrum of di↵erent
levels of the tutor involvement and the robot’s auton-
omy. We also evaluated these four learning strategies
using the proposed performance metrics.

While the currently presented formalism may ap-
pear to simplistic to apply to richer scenarios with
shifting the focus of attention and more complex dia-
logues, we believe that it forms a solid base of build-
ing blocks for basic tutor-learner interaction. In our
future work we will build upon this base and estab-
lish means of combining these blocks into more com-
plex framework which will account for more complex
situations.

Our primary goal is to develop a robot that would
be able to e�ciently acquire new concepts and to up-
date the existing ones in collaboration with a human
teacher. We have implemented the learning strate-
gies introduced in this paper on a real robot (for de-
tails the reader is referred to (Vrečko et al., 2009)).
When conducting research on interactive learning it
is crucial to have a real implementation of the learn-
ing framework on real robots and to test its function-
ality in real-world settings. However, it is equally im-
portant also to have formalisms and tools to perform
large scale experiments, which enable thorough eval-
uation and analysis of the proposed methods. We
believe that the proposed formal model can facili-
tate such research and enable further development
of related approaches.
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Abstract

We identify two properties of the human vision
system, the foveated retina, and the ability to sac-
cade, and show how these two properties are suf-
ficient to simultaneously learn the structure of re-
ceptive fields in the retina and a saccade policy
that centers the fovea on points of interest in a
scene.

We consider a novel learning algorithm under
this model, sensorimotor embedding, which we
evaluate using a simulated roving eye robot on
synthetic and natural scenes, and physical pan/tilt
camera. In each case we compare learned geome-
try to actual geometry, as well as the learned mo-
tor policy to the optimal motor policy. In both the
simulated roving eye experiments and the physi-
cal pan/tilt camera, our algorithm is able to learn
both an approximate sensor map and an effective
saccade policy.

The developmental nature of sensorimotor em-
bedding allows an agent to simultaneously adapt
both geometry and policy to changes in the phys-
ical model and motor properties of the retina. We
demonstrate adaption in the case of retinal lesion-
ing and motor map reversal.

1. Introduction

In the human eye, the retina is a non-uniform array of
photoreceptive rod and cone cells. The human retina has
a foveal pit, a single region of maximum density of cone
photoreceptors. In addition, a human can change the lo-
cation of the retina relative to a scene through ballistic
actions known as saccades (Palmer, 1999). The combi-
nation of a small, high-resolution fovea with the ability
to saccade to regions of interest is an economical strategy
for both humans and robots to achieve high-resolution vi-
sion across large fields of view.

Gathering and interpreting visual information requires
a motor map and a sensor map of the retina. The motor
map encodes the motor commands necessary to move the
eye to new locations in the visual scene and is used in
generating saccades. The sensor map represents the geo-
metric structure of the retina, specifically the positions of

sense elements within the sensor array, and can be used
to perform geometric operations on the visual signal such
as edge detection. We show how, by exploiting the rela-
tionship between motor commands and sensor geometry,
an autonomous agent with foveated vision can simultane-

ously learn both the motor and sensor maps.
For simple sensors, these maps can be manually spec-

ified, but as sensors become more complex and adap-
tive, learning approaches such as ours are of increasing
value to robotics. In addition, as lifetimes of autonomous
robots increase, the robust nature of this developmental
approach will allow robots to adapt to changing sensors
and motors.

2. Related Work

2.1 Learning Motor Maps

In previous work on learning motor maps for saccades,
the learning was driven by the two-dimensional differ-
ence between the pre-saccadic and post-saccadic position
of a target on the retina. These models assume that the
structure of the retina is known when learning the mo-
tor map, allowing calculation of the distance between a
target and the fovea.

In (Pagel et al., 1998) the authors use learning to im-
prove upon rough predictions made by first-principle ge-
ometric calculations. They represented the motor map
using growing neural gas. Using a training scheme that
involves corrective saccades, the agent experiences more
training examples in the foveal region, causing an in-
crease in the density of units in the region of the motor
map that represents the fovea.

In (Rao and Ballard, 1995) the authors also used a
strategy based on corrective saccades. They relied on the
ability to locate a point of interest in the post-saccadic
image using multiscale spatial filters, though the ability to
locate interest points using this method may be too strong
an assumption for a young infant with an immature visual
cortex (Slater, 1999).

In (Shibata et al., 2001), the authors use fifth order
splines and saliency maps (Itti and Koch, 2001) to gener-
ate realistic saccade trajectories and that closely resemble
human motion. In this work, we opt for a simpler saccade
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model that allows us to learn both sensor and motor maps
simultaneously.

The model used in (Weber and Triesch, 2006) is one of
the most recently published models and is the most sim-
ilar to ours. Like us and unlike previous work, they use
an error signal based on total retinal activation, exploit-
ing cases where the total activation of a foveated retina is
proportional to the degree of success of a saccade. Their
model treats learning the horizontal and vertical compo-
nents of saccades separately in accord with the experi-
mental results of (Noto and Robinson, 2001).

2.2 Learning Sensor Maps

In previous work on learning sensor maps,
(Pierce and Kuipers, 1997) demonstrated how sen-
sor maps for a mobile robot can be discovered from
uninterpreted high-dimensional sensor streams while
motor babbling, and (Olsson et al., 2006) later extended
these results to physical robots with visual perception.
These studies generate sensor maps using dimensionality
reduction algorithms that discover low-dimensional
sensor arrangements that approximate distances between
sensor trace histories. Two sensors are close in the sensor
map if their corresponding sense histories are highly
correlated.

In this work, we take a complementary but related ap-
proach and exploit some additional available structure,
namely the availability of motor commands. We base our
embedding, which we call sensorimotor embedding, on
the motor system’s ability to change the sensory signal.

The algorithm we present here utilizes the relationship
between sense and action to simultaneously extract use-
ful geometric features (i.e. sensor position) along with
primitive animate vision behaviors. Our method is appro-
priate for cases with an easily identifiable reward signal
(e.g. activation), linear ballistic motor commands, and a
high number of sense elements. We exploit the structure
of the sensorimotor domain to produce an explicit map-
ping between motor commands and sensor features. This
map has two interpretations, one as a primitive behav-
ior that maximizes reward (the policy interpretation), and
another as a structure for the sensor array (the geometric
interpretation).

3. A Foveated Retina

3.1 Model

Our abstract model of the foveated retina is inspired by
the anatomy of the human retina. In our model, a retina
is a collection of receptive fields, or sense elements, with
fixed geometry arrayed across a two dimensional surface.
Each receptive field responds to sensory input from a por-
tion of an image or scene according to its own activa-
tion function. Our learning rule requires that the distribu-
tion of activations across the retina be non-uniform and
achieve a single maximum at the fovea. In addition, un-

Figure 1: Our implementation of the fovea consists of overlap-
ping layers of receptive fields. As the layer resolution increases,
the extent of each receptive field decreases, and the number of
bits necessary to describe the layer state remains constant.

der our model, ballistic motions instantaneously change
the location of the retina in an image or scene.

Many implementations of a foveated retina satisfy
this model. In biological systems, receptive fields are
often distributed according to a log-polar distribution
(Schwartz, 1977) and many computational models of
saccade generation build upon this model of foveation
(Weber and Triesch, 2006, Rao and Ballard, 1995). For
this work, we view the specific distribution of receptive
fields as an implementation issue, and expect that any dis-
tribution that satisfies the modeling assumptions above
will behave similarly to our implementation.

3.2 Implementation

In our implementation, the learning agent has a foveated
retina with N layers of receptive fields (Figure 1). Each
layer has receptive fields of uniform extent and resolu-
tion. Layers with higher resolution and smaller extent
overlap layers with lower resolution in the center of the
retinal field of view. The fovea is the region with the high-
est concentration of overlapping receptive fields, and is
also the region of maximal activation, so this implemen-
tation satisfies the model assumptions specified above.
We stress that alternative implementations satisfying the
model assumptions should behave similarly.

The implementation of each individual receptive field
may also vary. In this case, each receptive field must map
a patch of underlying pixel or sensor values to an activa-
tion level. Let I

k

denote the image patch that affects the
state of the k

th receptive field. Let I denote the set of all
such patches.

In addition to the image patch associated with each re-
ceptive field, the activation depends on the global state of
the entire retina. In the case of a pan/tilt camera, we can
describe the retina state using the horizontal and vertical
angle of the camera lens (✓,�). In the case of the roving
eye, we can describe the state of the retina in terms of the
horizontal and vertical offsets (u, v) that describe the po-
sition of the retina in the larger image. However the state
space is parametrized, we denote the set of all states by
S.

We require that the receptive field implement an activa-
tion function � : I ⇥ S ! [0, 1]. In our implementation,
�(I

k

, s) is the total activation of the pixels in the image
patch I

k

given the current retina state s, normalized to
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[0, 1] as a fraction of the maximum possible activation.
The activation over the entire retina is the sum of the

activations for each receptive field for the current retina
state,

RI(s) =

X

Ik2I
�(I

k

, s) (1)

4. Reinforcement Learning Problem

In our computational model, saccades result in 2D dis-
placements of the image on the retina or pan/tilt changes
for a physical camera. Each action or saccade a : S ! S
is described by two-element vector denoting horizontal
and vertical motion and results in a single globally rigid
transformation of the image or scene.

If the receptive fields in the retina are of uniform size
and distribution, and they are exposed to input consist-
ing of a small spot of light against a uniform background,
then RI(s) would be approximately constant for all reti-
nal states s, regardless of where the spot of light falls.
However, with a foveated retina, RI(s) will have a dra-
matic maximum for retina states that cause the spot of
light to fall on the fovea, due to the larger density of re-
ceptive fields there.

Using the total activation of all the receptive fields for
the current retina state, RI(s) in Equation 1 as the re-
ward, combined with saccade actions, we can define a
simple reinforcement learning problem, the goal of which
is to find a policy, or choice of action, that maximizes reti-
nal activation.

We factor the global learning problem into an individ-
ual learning problem for each receptive field. The goal
of each receptive field is to learn a policy that greedily
maximizes the total retinal activation RI(s),

⇡

k

(s) = arg

a

maxRI(a(s)) (2)

The problem is episodic and spans a pre- and post-
saccade state. The collective policy ⇡

⇤ for the entire
retina is the weighted average of the actions preferred by
the individual receptive fields,

⇡

⇤
(s) =

1

RI(s)

X

Ik2I
�(I

k

, s) · ⇡
k

(s) (3)

In this factored learning problem, the only information
a receptive field has about the state of the retina is the
intensity level for that receptive field’s visible patch I

k

.
If the intensity is high (�(I

k

, s) is close to 1), then the
policy ⇡

k

(s) will have a large impact on the global policy
calculated in Equation 3. In this case, we want the policy
to suggest an action ⇡

k

(s) = a that maximizes the reward
RI(a(s)). The action that accomplishes this takes the
activation that the current receptive field sees and shifts
it to the fovea, where the density of receptive fields is
higher.

If the intensity is low, then the policy for that receptive
field will have little impact on the policy for the entire
retina since �(I

k

, s) is close to zero. As a consequence,

we can treat ⇡

k

(s) as a constant. So in the factored prob-
lem, each receptive field only needs to estimate the opti-
mal action and observe its own intensity level.

We predict that (after sufficient training), the action
specified by ⇡

k

will approximate the saccade that moves
an image-point from receptive field k directly to the
fovea. Consider the inverse �⇡

k

of the policy estimate
for each receptive field. This is the action that would
move an image-point from the fovea to the receptive field
k. In other words, the inverse of the policy is a posi-
tion for the receptive field relative to the fovea. We ex-
pect that physically proximate receptive fields will have
similar saccade policies, and hence similar learned posi-
tions. Note that we have not used any knowledge of the
location of receptive fields within the fovea. In fact, that
knowledge has been learned by the training process, and
is encoded in the policy ⇡

k

. Spatial knowledge that was
implicit in the anatomical structure of the retina becomes
explicit in the policy.

The reinforcement learning problem described above
has two unusual properties that constrain the choice of
learning algorithm. First, the action space is continuous
(as opposed to small and discrete). Second, the problem
is episodic, and each episode spans only one choice of
action.

During learning, each receptive field maintains an es-
timate for ⇡

k

, the current best action, and R

k

, the current
maximum estimated reward after performing the current
best action. Initially, each ⇡

k

is set to a random action,
and the reward estimate is initialized to zero.

At the beginning of each iteration or training, we ran-
domly reposition the retina. For exploration, some noise
✏ is added to the current greedy policy. The retina agent
executes ⇡

⇤
(s) + ✏, and measures the reward (R). Each

individual receptive field’s reward estimate and current
policy are updated proportional to its state activation prior
to the saccade (�

k

= �(I

k

, s)) since the optimal policy
⇡

⇤ is weighted according to those activations. We use a
moving average learning rule to update both the reward
estimate and current policy. For each receptive field k,
we update the reward as follows

R

new

k

=

(
R

old

k

+ �

k

· ↵ · (R�R

old

k

) if R > R

old

k

R

old

k

otherwise
(4)

If the reward received, R, is greater than our current re-
ward estimate, we move the current policy ⇡

k

for that
receptive field closer to the global policy responsible for
the increased reward

⇡

new

k

= ⇡

old

k

+ �

k

· ↵ · (⇡⇤ � ⇡

old

k

) (5)

By varying the learning rate ↵, we can change how
much recent experience affects both the estimate of re-
ward (R

k

) and the estimate of the optimal saccade (⇡
k

)
itself. We discuss cases where R

k

may decrease in Sec-
tions 5.2 and 5.3.
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Retinal Geometry Error
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Figure 2: This figure plots the mean geometric error as a func-
tion of training time. The mean and standard errors are shown
for ten independent training runs using a single dot image. The
subfigure shows the result of interpreting learned receptive field
policies as positions. Each line represents the error between the
true position and learned position — the head (dot or diamond
depending on the layer) is the true location of the field. The tail
is the learned position. For clarity, only two layers are shown.

5. Experimental Evaluation

5.1 Simulated Saliency

We trained a simulated foveated retina with four layers
of receptive fields on an image with a single white spot
on a black background, meant to simulate the result of
a saliency map. Each retina layer contained 32x32 re-
ceptive fields. The extent of each receptive field varied
by layer, with the largest layer having receptive fields of
size 4x4 (for a total retinal pixel area of 128x128). Ac-
tions corresponded to horizontal and vertical translations
of the retina across the image.

We randomly initialized the policy for each receptive
field and used a training rate ↵ = 0.5. ✏ was normally
distributed with a mean of 0 and a standard deviation of
10 pixels.

We use two criteria to measure the success of our
learning algorithm. The first computes the mean of the
Euclidean distances between the learned position (inter-
preted as the additive inverse of the policy) and the true
position pos(I

k

) of all receptive fields (Equation 6).1 The
results of training are shown in Figure 2.

E

geometry

=

1

N

NX

k=1

||� ⇡

k

� pos(I

k

)||2 (6)

For the second criterion, we compare the accuracy of
the learned saccade against the optimal saccade, which

1This analysis compares pixel positions to action space positions.
This is only possible since translations of the roving eye retina are spec-
ified in pixels. In experiments using a pan/tilt camera, we do not have
the same access to error free ground truth actions.

Saccade Error
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Figure 3: The saccade error as a function of the number of train-
ing iterations using the learning algorithm of Section 4. The
saccade error is computed over thirty random repositions every
100 timesteps for ten independent trials. Note that even with
an optimal policy, saccades are not entirely accurate because of
low resolution in the periphery of the retina.

would center the retina on the area of high activation. We
also test two-saccade accuracy, where the retina makes a
second saccade after the first during testing but not train-
ing.

During the training process, every 100 training steps,
we stop training and test saccade and two saccade accu-
racy for 30 random repositions. The average and standard
errors of the accuracies over ten training trials are shown
in Figure 3, which also includes comparisons with a ran-
domly initialized policy and an optimal policy (where
each policy is initialized to the inverse of that receptive
field’s position).

The learning algorithm achieves near-optimal saccade
accuracy after 5000 training steps. Comparing Figures 2
and 3, we see that the geometric error decreases as ac-
curacy increases, though the final sensor map only ap-
proximates the true positions of the receptive fields. Our
algorithms final saccade error of 5 pixels is less than that
of (Pagel et al., 1998) and requires only a quarter of the
number of training steps.

5.2 Lesioning

In natural scenes, or in cases where the number of recep-
tive fields in the fovea changes as with macular degener-
ation, the maximum achievable reward changes. In these
cases, the maximum achievable reward may decrease to a
level below the current reward estimate for each receptive
field, R < R

old

k

and so no updates will take place. To ac-
count for this kind of variation over time, we can change
the learning rule to maintain a recency-weighted average
estimated reward, instead of maintaining an estimate of
maximum reward.
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Lesion at T=2000
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Figure 4: As a result of lesioning, a retina, with a robust learning
rule as described in this section, adapts its policy to favor sac-
cades to regions just outside the damaged region (see subfigure),
providing higher post-saccadic activation in the case of lesion-
ing than the previous optimal saccades directly to the fovea. We
note that this increases the position error relative to the ground
truth, but provides a coordinate system consistent with the sen-
sorimotor properties of the damaged retina. The basic learning
rule from Section 4 fails to adapt following a lesioning event.

This learning rule would require that the reward esti-
mate be updated each timestep

R

new

k

= R

old

k

+ �

k

· ↵ · (R�R

old

k

) (7)

instead of only updating during timesteps where R >

R

old

k

.
We tested the ability of this modified algorithm to

adapt to lesioning a small off-center part of the foveal
region of the retina after 2000 steps of normal training.
The mean post-saccade activation increases after lesion-
ing when the agent uses the the robust learning rule (Fig-
ure 4). The basic learning rule, however, does not adapt
to the lesioning event.

5.3 Motor Map Reversal

The modified algorithm presented above to deal with
lesioning may require very high sample complexity to
properly adapt to large changes in the motor model of
the foveated retina.

Even though the reward estimates for each receptive
field would adjust downward after a large change in the
semantics of the motor commands, exploration still de-
pends on adding noise to the previous policy estimate
for each receptive field. In cases where the motor model
changes radically, this exploratory bias may handicap any
attempt to learn an alternative motor map.

Humans have shown some capacity for adapting to
drastic changes in sensorimotor experience. For exam-

Motor Reversal Results

�����������	
�

��	��

�
�
�


�

��
	
��
�


��

� ���� ���� ���� ����
���	
�	�


��

��

��

��

��

��

Figure 5: The left figure shows the moving average estimate
of rewards experienced during training. A reversal in the mo-
tor map occurs after 4000 timesteps results in a decrease in the
moving average reward estimate. After decreasing over 1000
timesteps, the retina resets the rewards estimate and the esti-
mates for each receptive field and begins adapting to the new
motor model. This results in a decrease in � and an increase in
exploration as shown on the right.

ple, in a self study using prismatic inverting eye-wear
(Dolezal, 1982), Dolezal reports both initial difficulty in
simple reaching tasks followed later by comfortable mas-
tery.

In Dolezal’s inverted perceptual world, pointing up re-
sults in the visual perception of pointing down. By re-
versing the result of a motor command along one axis,
we can simulate a similar (but less complex) change in
the relationship between the motor actions and percep-
tual response. Though our experiment does not capture
the full range of altered sensorimotor contingencies pre-
sented in (Dolezal, 1982), this experiment illustrates the
need for a different kind of adaption in the face of signif-
icant changes in sensorimotor contingencies.

In this modification, each receptive field maintains an
estimate of the optimal reward and policy as before. The
retina also maintains an estimate of the maximum ob-
served reward, a moving average of all the observed re-
wards, along with the reward estimates associated with
each receptive field.

The exploration/exploitation trade-off is driven by a
parameter, �, that is meant to measure the extent to which
the learned policy for currently active receptive fields will
be able to achieve the maximum observable reward as es-
timated by the retina as a whole.

For a given pre-saccade retina state s, we compute both
the current action estimate a and the reward estimate r

a

.
� is then the ratio of r

a

to r

max

, the maximum observed
reward for the entire retina. Intuitively, if r

a

is close to
r

max

then the action a is likely close to optimal, and so
little exploration is necessary. Similarly, if r

a

is less that
r

max

, the action a is likely suboptimal, and so more ex-
ploration is required. The actual action taken is

�a + (1� �)a

exp

where a

exp

is a random saccade.
We use a large negative change in the moving average

of all the rewards as an indicator of a major change to the
retina motor or sensor map (Figure 5). When detecting
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Natural Scene Image Results
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Figure 6: For this experiment, subsets of natural scene images
were chosen randomly. This graph shows the mean and vari-
ance of ten runs for each subset size and is best viewed in color.
Training across sets of images results in more consistent learn-
ing curves than training over single images, since the variance
is smaller for training that takes place across subsets. Even in
the single image case (where each run drew training examples
from a single image) the mean learning curve was qualitatively
similar to the others, but the high variance suggests that some
images are “bad” sources of training examples.

this kind of change, the retina resets the reward estimates
of all the receptive fields to their original values. This
significantly decreases �, triggering an increase in explo-
ration and decreasing the contribution of the previously
learned policy.

5.4 Natural Scenes

To recapture the features of the single spot case in natural
scenes, we construct a proto-saliency map from natural
scenes by first blurring the image under the retina using a
Gaussian blur with a 5x5 filter size2, then thresholding the
image and taking pixels that fall into the top one percent
brightness level in the region under the retina. If the num-
ber of active pixels is less than 500 pixels, we proceed to
train on that portion of the image, otherwise the agent
performs a new random saccade without training. This
is to avoid training in situations of homogeneous bright-
ness that wash out any existing progress on learning the
optimal policy.

We note that humans tend to avoid saccading to ar-
eas of high luminance at low spatial scales (e.g. sky,
solid colors) (Tatler et al., 2005). By avoiding training
when the number of active pixels after thresholding is too
high, we avoid training on precisely these kinds of high-

2Blurring is incompatible with the assumption that geometric in-
formation is not available. However, this blurring step is meant to
simulate the optical characteristics of infants during early development
(Slater, 1999), not infant visual processing.

luminance inputs.
Due to the variation in learning performance across im-

ages, we examine how the learning process behaves when
trained over subsets of images randomly chosen from the
Berkeley segmentation dataset (Martin et al., 2001). For
each run, we select a set of images (N=1, 5 or 10) to
train over. We cycle through the images, training 19 times
over each image before moving to the next image in the
cycle to continue training. As before, we evaluate the
learning performance by measuring geometric errors ev-
ery 100 timesteps of training. The results are shown in
Figure 6.

Even though the final error rates are higher than when
trained with the synthetic scene (Section 5.1), we note
that the fixed point behavior of the policy (allowing re-
peated corrective saccades) does result in accuracy com-
parable to what training achieves on an ideal version of a
saliency map after a similar number of training steps. The
following table shows the accuracy after one and two sac-
cades, as well as after the number needed to reach a fixed
point (or in rare cases, a cycle – in which case the closest
cycle point is counted).

1 Saccade 2 Saccades Fixed Point
20.4 12.5 7.6

5.5 Pan/Tilt Camera

For the physical pan/tilt experimental setup, we used a
Logitech QuickCam Orbit AF placed 15 feet from a sin-
gle light source. To reduce training time, we modified the
exploration policy to search randomly for a bright light.
The agent performs a random saccade away from the light
source. During training the agent than performs the op-
posite saccade back towards the light source, and uses
the resulting retinal activations to learn a function from
field activation to optimal saccades using the algorithm
described in Section 4 with the proto-saliency method as
described in Section 5.4. Unlike a learned policy, this
open-loop training policy cannot account for relocation
of the salient light source.

Figure 7 shows the decrease in saccade error and the
increase in post-saccade reward (or activation) after in-
tervals of 100 training steps. Each data point is the mean
of 10 test trials. Each trial randomly saccades away from
the light source, then computes the return saccade as the
activation weighted average of the learned receptive field
policies. For a trained retina, the post-saccade reward is
independent of the initial random saccade, since the state
of highest reward is reachable from any random starting
position.

In our simulation experiments, the learned policies cor-
respond to ground truth pixel geometry, since actions for
the simulated roving eye camera are pixel unit transla-
tions over an image. The action space of the pan/tilt
camera, however, is not represented in pixel unit shifts.
The motor commands represent control signals sent di-
rectly to the piezoelectric motors in the camera appara-
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Pan/Tilt Results
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Figure 7: Every 100 training timesteps, we perform 10 test tri-
als with the pan/tilt camera, randomly saccading away from the
light source, then using the learned saccade policy to attempt to
recenter on the light source (as opposed to using the inverse of
the random saccade as in training). As training progresses, each
receptive field learns a policy that centers local activation at the
fovea resulting in greater post-saccade reward (dashed line) and
lower saccade error (solid line). The subfigure shows the cor-
responding action space coordinates of each receptive field for
two different layers of receptive fields after training.

tus. Camera geometry, along with irregularities in cam-
era control, make the correspondence between motor sig-
nals and pixel shifts in the field of view necessarily inex-
act. We made no attempts to improve the correspondence
through any alternative method of system identification
beyond running our algorithm.

As a result of the learning process, for each region of
interest we have access to the motor coordinates that cen-
ter the camera on the region of interest. The geometry
of these action space coordinates approximates (up to a
scale factor) the ground truth geometry of the receptive
fields in pixels.

Our approach is not limited to finding a sensor map
in the coordinate system of the action space. With ac-
cess to the ground truth pixel geometry for each recep-
tive field, we can also construct a map from ground truth
pixel coordinates to the corresponding action space coor-
dinates, providing the ability to switch between pixel and
motor geometry as a method of controlling the pan tilt
camera. Selecting pixel coordinates (and activating the
corresponding receptive fields) for a region of interest is
sufficient to generate the corresponding motor mapping
that brings those pixels to the center of the field of view.
In other words, the learning algorithm autonomously pro-
vides a method for going from pan/tilt (or joystick) con-
trol, to point and click control in the view frame.

Subjective Localization
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Figure 8: The results of localization in a roving eye domain. A
roving eye was able to use features and their associated policies
learned through sensorimotor embedding to reconstruct a visual
path.

6. Future Directions

Sensorimotor embedding can be applied to other types
of structure discovery problems. As an example, an
agent can use sensorimotor embedding to visually lo-
calize by associating sensor inputs with ballistic actions
that bring about desired changes in sensor state. This
provides an alternative to action respecting embedding

(Bowling et al., 2007) in continuous action spaces.
We applied sensorimotor embedding to the “roving

eye” domain by first generating a set of 50 principle com-
ponent basis vectors using random samples of a scene.
We then formed a feature set consisting of principle pro-
jections of random samples onto these principle compo-
nents. Associated with each feature is a reward and ballis-
tic policy estimate just like the receptive fields described
above.

During training, the projection of each eye image is
compared to each feature. The winning feature deter-
mines the next (noisy) action. After each action, the re-
ward is the least of the inverse of the distance to a pre-
defined point in the scene or one. Updates to reward
and policy estimates are the same as in Section 4. Once
trained, a sequence of images can be embedded directly
in the learned motor space by comparing each images
projection with the feature set. An example embedding
for a visual path of a roving eye is shown in Figure 8.

7. Discussion

Our experimental results confirm that, under simple as-
sumptions, an agent can simultaneously discover motor
and sensor maps for a foveated retina. Like Weber and
Triesch, we use total activation as a reward signal to learn
the motor map; however, we demonstrate the ability to
learn without prior knowledge of the sensor map. To
do so, we generate a proto-saliency map directly from
natural scenes in a geometry-free way. After learning
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the motor map, we generate the sensor map by exploit-
ing the relationship between sensor geometry and motor
commands. Previous approaches to sensor map construc-
tion use dimensionality reduction techniques and do not
exploit additional available domain structure, namely ac-
cess to motor commands.

Representing the sensor map in motor units may ap-
pear to be a limitation of the approach. However, in
the absence of some external system identification, we
would expect that a developmental agent would have dif-
ficulty discovering sensor geometry in units other than
those which correspond in some way to motor semantics.

Our method is appropriate for cases with an easily
identifiable reward signal (e.g. activation), linear ballis-
tic motor commands, and a high number of sense ele-
ments. We exploit the structure of the sensorimotor do-
main to produce an explicit mapping between motor com-
mands and sensor features. This map has two interpreta-
tions, one as a primitive behavior that maximizes reward
(the policy or motor map interpretation), and another as
a structure for the sensor array (the geometry or sensor
map interpretation).

The sensorimotor embedding algorithm we present
above, and the general approach of utilizing action spaces
to better understand sensor spaces represents a fun-
damental first step in building a computational model
of vision that follows the “seeing is acting” paradigm
(O’Regan and Noë, 2001).

Any developmental process or autonomous robot de-
pends on robust sensorimotor primitives that can adapt to
changes over time. We demonstrate the robustness of our
learning process under both lesioning and motor map re-
versal. We believe that focusing on associating structure
with motor commands that bring about desirable changes
in perceptual state, as in foveated retina and localiza-
tion, will result in precisely the kind of robust sensori-
motor primitives required for autonomous developmental
robots.
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Abstract

This paper presents a learning mecha-
nism that nds a reasonable segmentation to
achieve social behavior as well as that incre-
mentally acquires it by reproducing the con-
tingency in interactions with a caregiver. The
robot autonomously categorizes sensorimotor
activity according to a contingency measure
based on transfer entropy. The advantage of
adaptive categorization is tested in a task of
acquiring joint attention behaviors. The re-
sults of computer simulations of human-robot
interaction indicate that a robot acquires a se-
ries of joint attention behaviors such as gaze
following and alternation and nds suitable
segmentation over time that improves gaze
following performance.

1. Introduction

Human infants acquire a variety of social behaviors
through interaction with others. In particular, joint
visual attention is one of the building blocks for such
social capabilities as language communication and
mind-reading (Moore and Dunham, 1995). Under-
standing how infants acquire a variety of joint atten-
tion behaviors such as gaze following, gaze alterna-
tion, i.e., successive looking between a caregiver and
an object, and pointing is a central topic in devel-
opmental psychology. However, how infants acquire
such behaviors remains a mystery.

Recently in robotics, joint attention stud-
ies have been receiving increased attention
not only from the viewpoint of building com-
municative robots (Imai et al., 2001) but also
from synthetic approaches for modeling and
understanding human developmental pro-
cesses (Nagai et al., 2003, Triesch et al., 2006),
as argued in surveys (Kaplan and Hafner, 2004,
Asada et al., 2009). Sumioka et al addressed how

a robot can acquire di erent joint attention be-
haviors (Sumioka et al., 2008) by emphasizing a
statistical structure that re ects that infants can
often attain consistent consequences when they
respond adequately to a preceding stimulus that
includes the behavior of their caregivers. Such a
structure of the relationship (called contingency)
among a preceding stimulus, one’s own action, and
its consequence was utilized to nd more contingent
sets including sensory and motor variables that
provide consistent consequences to a robot among
several candidates, and to construct sensorimotor
maps based on the found sets. The results of
computer simulations of human-robot interaction
indicated that nding the contingency and repro-
ducing it enable a robot to acquire a series of joint
attention behaviors such as gaze following and
alternation in an order that is almost identical to
infant development.

In their study (Sumioka et al., 2008), each random
variable was quantized in advance into su ciently
reasonable segments to reproduce the contingencies
of interaction between a robot and a caregiver for the
robot to acquire social behavior. However, it is not
trivial for a robot to adequately quantize a variable
since the most reasonable segmentation depends on
the robot’s sensor resolution, the control resolutions
of the caregiver’s and the robot’s behaviors, and the
observed object size and its location. Once the robot
found the contingency based on rough segmentation,
it is expected that it can nd stronger contingency if
it has more sophisticated segmentation. Therefore,
we utilize a contingency measure to obtain more rea-
sonable segmentation of variables by re-quantizing
them so that a robot can nd stronger contingency.
We hypothesize that quantizing variables to experi-
ence more contingent consequences enable the robot
to acquire social behavior to satisfactorily interact
with its caregiver.

This paper presents a learning mechanism that
adaptively quantizes each variable, nds the contin-
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gency, and reproduces the contingent relationship.
The contingency measure based on information the-
ory (Sumioka et al., 2008) is utilized for adaptive
quantizing whose advantage is tested in a task of ac-
quiring joint attention behavior. The results of the
computer simulations of human-robot interaction in-
dicate that a robot acquired a series of joint attention
behaviors such as gaze following and alternation and
found suitable segmentation that improved over time
the gaze following performance.

2. Face-to-face interaction to develop
joint attention behavior

Figure 1: Environmental setting

To examine whether a robot can acquire a vari-
ety of joint attention behaviors by quantizing sen-
sory and motor variables, we start with a rough
model of a caregiver’s gaze shift and simulate al-
most the same interaction as in previous stud-
ies (Sumioka et al., 2008).

Figure 1 shows the interaction’s environmental set-
ting. The robot sits across from the caregiver at
a xed distance. An interaction where both of the
caregiver and the robot successively take an action
is de ned as a time step. A table has NX × NY

sections where two identical objects are placed ran-
domly, each of which occupies OX×OY sections. The
positions of the objects are determined randomly ev-
ery ten steps.

In an interaction, the caregiver observes her envi-
ronment and shifts her gaze to the robot or an ob-
ject based on a few policies described in section 4.1.2.
Next, the robot observes its environment and obtains
information about the direction of the caregiver’s
face (S1) and the object’s presence (S2) as sensory
variables. It stores the information about what it is
looking at as the result of its actions that are called
resultant sensory variables: caregiver’s frontal face
(R1), caregiver’s pro le (R2), and the presence of an
object (R3). Finally, it shifts its gaze to the care-
giver or a table section, makes a hand gesture, and
stores motor commands for gaze shift (M1) and one
for hand gesture (M2) as motor variables.

Here, a contingency inherent in the interaction ap-
pears as a dependency of state transition of a resul-
tant sensory variable on sensory and motor variables.
We call a triplet of variables (Si, Mj , Rk) an event
variable. Moreover, an event variable that involves
strong dependency is called a contingent event vari-
able. The robot’s task is performed by nding a con-
tingent event variable and acquiring a sensorimotor
mapping based on the found event variable. More-
over, the robot has to determine how it should quan-
tize the sensory and motor variables.

3. Proposed mechanism to succes-
sively develop social behavior with
adaptive partitioning

Instead of designers who quantize a random variable
into several segments in advance, our robot quan-
tizes them autonomously. A contingency measure
proposed by Sumioka et al. (Sumioka et al., 2008)
is utilized for quantizing variables and construct-
ing sensorimotor maps. The proposed architecture
shown in Figure 2 consists of three features: (1) a
contingency monitor that sends commands to quan-
tize sensory and motor variables, (2) a state/motor
categorizer to output one of the components in the
sensory or motor variable based on the observed fea-
tures or the motor commands, and (3) a sequential
contingency learning module that enables the robot
to acquire several actions by nding the interaction’s
contingency and its reproduction.

Figure 2: Proposed mechanism

Observed sensory features are organized by the
state categorizer as one of the components in each
sensory variable. The selected components are sent
to the sequential contingency learning module, which
decides one component in each motor variable based
on the acquired sensorimotor mapping or the in-
nate behavior policies described in Section 3.2.3. Fi-
nally, the motor categorizer selects the motor com-
mands based on the selected components. Dur-
ing this process, an event variable’s contingency
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is evaluated in the sequential contingency learn-
ing module by calculating the contingency mea-
sure (Sumioka et al., 2008), as described in the next
section. According to the measure, the contingency
monitor commands the state and motor categorizers
to update the segmentation in the sensory and motor
variables.

3.1 Contingency measure

Based on transfer entropy (Schreiber, 2000), Sum-
ioka et al. proposed an information theoretic mea-
sure of contingency called saliency of contingency
(C-saliency) to quantify the contingency of an event
variable (Sumioka et al., 2008).

Suppose that time series variables X and Y may
be approximated by rst-order Markov processes and
that they form the following contingency: xt+1, the
value of X at time t + 1 is only in uenced by xt and
yt, i.e., the values of X and Y at previous time t.
Here, the transfer entropy that indicates the in u-
ence of Y on X is de ned by

TY →X =
∑

p(xt+1, xt, yt) log
p(xt+1|xt, yt)

p(xt+1|xt)
. (1)

C-saliency Cj
i,k, which quanti es the joint e ect of

sensory variable Si and motor variable Mj on resul-
tant sensory variable Rk, is de ned as

Cj
i,k = T(Si,Mj)→Rk

(TSi→Rk + TMj→Rk)

=
∑

st
i,rt

k

p(rt
k, st

i)
∑

rt+1

k ,mt
j

e(rt+1
k ,mt

j |rt
k, st

i),

(2)

where e(rt+1
k ,mt

j |rt
k, st

i) is called an element of C-
saliency under a pair of observed values (rt

k, st
i) and

is given by:

e(rt+1
k ,mt

j |rt
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i) =

p(rt+1
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i) log
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j)
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k) log
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j)

p(rt+1

k |rt
k)

. (3)

The element of C-saliency represents the strength
of the state transition’s dependency from rt

k to
rt+1
k on pair (st

i,m
t
j ,). If triplet (rt

k,st
i, mt

j) causes

rt+1
k , the di erence between p(rt+1

k |rt
k, st

i,m
t
j), and

p(rt+1
k |rt

k, st
i) becomes larger. The event variable

with the highest C-saliency is regarded as the con-
tingent event variable.

Additionally, C-saliency has an interesting feature
for evaluating the performance of an acquired senso-
rimotor map. If a sensorimotor map usually causes
contingent consequences, it enables a robot to pre-
dict the state transitions of a resultant sensory vari-
able only by the states of a sensory variable. The

C-saliency related to such a map gets lower because
the rst term’s value in Eq. (3) is reduced. Therefore,
a derivative of C-saliency is useful to evaluate the ac-
quired sensorimotor map’s accuracy; if the derivative
is negative, the robot has acquired a sensorimotor
map to su ciently reproduce the contingency, but
the robot needs to quantize the variables related to
the map if the derivative is not negative.

3.2 Components in proposed mechanism

The C-saliencies of event variables are utilized by the
proposed mechanism not only to nd the contingency
and reproduce it but also to quantize the variables
based on more reasonable segmentation. Here, the
roles of the components in the mechanism are de-
scribed.

3.2.1 Contingency monitor

The contingency monitor modulates the quantization
of the sensory and motor variables. The quantization
of a variable consists of two processes: how should
it be quantized by the existing segments (arrange-
ment process) and how many segments should it be
quantized into (insertion process). In each process,
we used a derivative of C-saliency. Here, the deriva-
tive of C-saliency for event variable (Si,Mj , Rk) at
t time steps is indicated as Cj

i,k(t) = Cj
i,k(t)

Cj
i,k(t 1), where Cj

i,k(t) indicates the C-saliency for
(Si,Mj , Rk) at t time steps.

The arrangement process is always applied for
all sensory and motor variables. In this pro-
cess, segments in the variables are re-quantized
by the sensory or motor categorizer. How much
these segments should be modulated are deter-
mined by value, CS

max or CM
max, which is

sent from the contingency monitor. CS
max and

CM
max for sensory variable Si and motor vari-

able Mj are given by CS
max = maxj,k Cj

i,k and

CM
max = maxi,k Cj

i,k , respectively. To avoid

modulation when the C-saliencies are overestimated
due to insu cient samples, these values are sent
when the variance for the moving average of each C-
saliency during TA time steps, A

j
i,k, is lower than

εA.
After the contingency detector selects a contingent

event variable and acquires actions to reproduce the
contingency of the event variable described in Sec-
tion 3.2.3, the contingency monitor use the insertion
process that decides whether it should insert new seg-
ments into a sensory or a motor variable included in
a contingent event variable. Let cCj

i,k be C-saliency
for contingent event variable (Si, Mj , Rk). New seg-
ments are inserted to Si and Mj when variance I

j
i,k

for the moving average of its derivative cCj
i,k keeps
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a lower value than εS during T I time steps. Once
new segments are inserted into the sensory and mo-
tor variables, the insertion process is not applied for
those variables during TD time steps.

3.2.2 Sensory/motor categorizer

The state/motor categorizer outputs one segment in
each of the sensory or motor variables for given in-
puts. Suppose that variable V is quantized into Nv

codebook vectors and vector va! represents segment
vc! (" = 1, 2, , Nv). When vector vx related to
V is input to the state/motor categorizer, it selects
segment vc! with probability P (V = vc!):

P (V = vc!) =
exp {1/ (τv‖vx va!‖)}

∑Nv

q=1
exp {1/ (τv‖vx vaq‖)}

, (4)

where τv is a positive constant.
Selected codebook vector va! is updated based on
C (which stands for CS

max or CM
max described in

Section 3.2.1), which is related to an event variable
including V :

vat+1
! = vat

! + vx,va! C

[

vxt vat
!

]

if. vxt ∈ vc! , (5)

where, is a learning rate. vx,va! is given by

vx,va! = exp −‖vxt−vat
!‖

ζ , where ζ is a constant

value. C is de ned as C = ξ tanh ( C), and ξ
is constant.

In addition, the sensory or motor categorizer in-
serts new codebook vectors for a variable when the
insertion process is applied to the variable by the con-
tingency monitor. Each categorizer decides where to
insert the vectors based on the policy described in
Section 4..

3.2.3 Sequential contingency learning mod-
ule

We used the learning module proposed by Sumioka
et al that consists of a contingency detector to calcu-
late C-saliencies for all event variables, contingency
reproduction modules (CMs) that construct sensori-
motor maps to reproduce found contingency, reactive
behavior modules (RMs) that output a motor com-
mand based on a xed behavior policy, and a module
selector that selects motor commands among several
outputs from CMs and RMs (Sumioka et al., 2008).

The sequential contingency learning module keeps
acquiring di erent sensorimotor mappings as follows.
At the beginning of learning, since there are no CMs,
the module selector selects the outputs of the RMs.
As interaction between a caregiver and the robot is
iterated, the contingency detector nds a contingent
event variable and generates a new CM that con-
structs a sensorimotor map to reproduce the found

contingency. Once a CM is generated, the module se-
lector starts to select outputs from the CM and from
the RMs. The robot acquires several actions by this
iteration of nding contingency and its reproduction.

Note that whenever a new CM is generated, a new
sensory variable S and a new motor variable M
are added to their sets to indicate whether the new
CM was used and is going to be used, respectively.
The contingency detector also starts to evaluate new
event variables including S or M . Such event
variables may be selected as a next contingent event
variable if the found contingency leads to novel con-
tingency. Therefore, the robot is expected to nd a
series of contingent events.

The sensorimotor map in CM is modulated ev-
ery 200 time steps to utilize more reasonable seg-
mentation. Hereafter i-th CM, which is consti-
tuted for event variable (Si,Mj , Rk), is de ned as
Πi(Rk|Si,Mj).

4. Experiment

We conducted computer simulations to test whether
the proposed mechanism can acquire joint attention
actions in di erent environments. We rst examined
whether a robot can acquire a series of joint atten-
tion behaviors such as gaze following and alternation
in a simple environmental setting. The size of the
objects was then changed to show that the mech-
anism can nd the more reasonable segmentation.
After that, the mechanism’s performance was tested
in more complex situations where a robot has to deal
with high-dimensional information or a eld of view
as the bias inherent in humans. In all experiments,
the policies for the RMs and the parameters were set
so that the robot could at least nd the contingency
related to gaze following.

4.1 Experimental setting

4.1.1 Environment and infant model

The initial set of variables is listed in Table 1. The
sensory variable for the caregiver’s face is denoted
by S1, which consists of two segments, (S1c1 and
S1c2), and two additional components that indicate
whether an infant model (hereafter a robot) is look-
ing at her frontal face (fr) or is not looking at the
caregiver (fφ), respectively. In the experiments, we
xed the number of components in the sensory vari-

able for object S2. Each member of S2 indicates
whether the robot is looking at an object (o) or at
something else (oφ).

Resultant variables R1, R2, and R3 are designed
as binary variables that indicate whether the robot
is looking at its preferred face or object ( 1 ) or not
( 0 ). The robot’s gaze shift denoted by M1 consists
of two segments, (M1c1,M1 c2), and additional motor
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command gc that indicates a gaze shift to the care-
giver’s face. Likewise, the gesture denoted by M2

consists of two segments (M2c1,M2 c2) and hc, which
indicate it is pointing its hands at the caregiver’s
face.

Two RMs are used to determine the gaze and hand
movements by selecting a component of M1 and M2.
The RM for M1 is designed to select either gc with
probability 0.1 or one segment with probability 0.9,
and the RM for M2 randomly selects a component
of M2. The parameters in the proposed mechanism
are set as (TA, T I , TD, εA, εI , τv) = (2.0 × 103, 5.0 ×
103, 2.0 × 105, 1.0 × 10−10, 1.0 × 10−12, 2.0 × 10−2).
The joint and conditional probabilities to calculate
the C-saliencies were estimated using the histograms
of the values of the event variables.

Table 1: Initial variables in robot

Type Name Elements

S
caregiver’s face S1 = {S1c1,S1 c2, fr, fφ}

object S2 = {o, oφ}

M
gaze shift M1 = M1c1,M1 c2, gc

hand gesture M2 = M2c1,M2 c2, hc

R
frontal face of caregiver R1 = {0, 1}

pro le of caregiver R2 = {0, 1}
object R3 = {0, 1}

4.1.2 Behavior rules for caregivers

We used the caregiver model described in a previous
study (Sumioka et al., 2008). The caregiver, who al-
ways looks at the robot’s face or an object on the
table, not only randomly selects a target but also
shows joint attention behavior.

She usually selects a target randomly. If she is
looking at the robot’s face, she follows the robot’s
gaze with probability pc

rja. If she is looking at an
object, she shifts her gaze between the robot and an
object with probability pc

ija. In addition, the care-
giver shifts her gaze to the robot’s face with probabil-
ity pc

aja if she and the robot are successfully looking
at the same object. In the following experiments, we
used (pc

rja, pc
ija, pc

aja) = (0.5, 0.5, 1.0).

4.2 Development of joint attention with
adaptive segmentation

We rst con rmed that the proposed mechanism en-
ables a robot to acquire a variety of actions related
to joint attention with quantizing sensory and motor
variables. We ran 2,000,000 time step simulations
ve times where two objects, each of which occupied

5 × 1 sections, were arranged on a table with 50 ×
1 sections. We set ( , ζ, ξ) = (0.1, 10, 6.0 × 104). In

each simulation, two codebook vectors were added
to the positions of the two existing codebook vectors
selected randomly when the contingency monitor se-
lected the insertion process for sensory and motor
variables.
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Figure 3: Time courses of saliency of contingency of event

variables in simulation face-to-face interactions between

caregiver and robot

An average of 2.8 CMs was obtained. In 80% of
the simulations, a particular set of CMs was gen-
erated in the following xed order: Π1(R3|S1,M1),
Π2(R2|S2,M1), and Π3(R2|S 1

3 ,M1). Each of these
CMs allowed the robot to achieve social behav-
ior: following the caregiver’s gaze (Π1(R3|S1,M1);
hereafter called following-gaze module), shifting
its gaze to the caregiver after seeing an object
(Π2(R1|S2,M1); hereafter called returning (seeing-
object) module), and shifting its gaze to the caregiver
regardless of whether gaze following was achieved
(Π3(R2|S 1

3 ,M1); hereafter called returning (no-
condition) module).

Figure 3 shows examples of the time courses of C-
saliencies for nine event variables whose C-saliencies
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are higher than others. The vertical axis indicates
the logarithmic value of the C-saliencies. We also
show the timing of generating new CMs as arrows at
the top of the graph in Fig. 3(a). After su cient in-
teraction data were collected, C1

1,3 became the high-
est among all C-saliencies (blue curve in Fig. 3(a)).
As a result, a new CM (Π1(R3|S1,M1)) correspond-
ing to the following-gaze module was generated, and
S 1

3 and M 1

3 were added as sensory and motor vari-
ables, respectively. The robot then began to follow
the caregiver’s gaze with the following-gaze module.
However, the gaze following success rate was not so
high at many areas on the table (see Fig. 4(a)) be-
cause S1 and M1 have only two segments; that is, the
robot classi es the caregiver’s face looking at the ta-
ble as only two di erent patterns. In this case, C1

1,3

does not decrease since segmentation is not reason-
able to achieve gaze following. Therefore, new seg-
ments are inserted into S1 and M1 (see Fig. 3(b)).
Finally, the number of segments in S1 or M1 averaged
6.4. The codebook vectors in each variable were ar-
ranged at almost equal distance at the simulation’s
end (Fig. 5). The found segment arrangement en-
ables the robot to successfully achieve gaze following
with the caregiver (see Fig. 4(b)).
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Figure 4: Changes in success rate of gaze following

The increase of the success rate of gaze follow-
ing led C1

1,3 to decrease gradually. This decrease
made C1

2,2 the next highest value, and the return-
ing (seeing-object) module was generated. Using
output from this module changed the contingency
in the interaction and increased C1

3,2 (red curve in
Fig. 3(a)). This caused the generation of the return-
ing (no-condition) module and enabled the robot to
shift its gaze to the caregiver regardless whether it
followed the caregiver’s gaze. The the robot alter-
nately shifted its gaze between the caregiver and the
object. This indicates that the robot acquired gaze
following and alternation by nding a reasonable seg-
ment arrangement.
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Figure 5: Transition of codebook vectors

4.3 Performance of adaptive segmentation

Such environmental features as table or object size
a ect how many segments are needed to achieve gaze
following. We examined to what extent the robot
can maintain a high gaze following performance in
several di erent situations by arranging objects with
di erent sizes.

We used the same experimental setting as in pre-
vious section, except for the size of objects. To show
the advantage of the proposed mechanism, we also
tested mechanisms without the arrangement and in-
sertion processes; S1, M1, and M2 were quantized
into xed segments (four, eight, or twelve segments)
that were arranged at equal distance in advance.

Figure 6 shows the average success rate of gaze
following in utilizing the following-gaze module for
di erent object sizes. The proposed mechanism
achieved a high success rate in every case, but the
mechanisms without the arrangement and insertion
processes had a low success rate, except when the
number of segments was su cient to achieve gaze
following.

We also checked how many segments are arranged
in S1 or M1 after learning. Figure 7 shows that the
larger the object size is, the fewer segments is ar-
ranged in S1 or M1. When the caregiver is looking at
a large object, the robot can nd the object by shift-
ing its gaze roughly in her gaze direction. Therefore,
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the results shown in Fig. 7 seems to indicate that the
proposed mechanism found reasonable segmentation
to achieve gaze following.
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4.4 Segmentation in presence of high-
dimensional information

In natural interaction with a caregiver, an infant
must deal with high-dimensional information. In this
case, designers have di culty quantizing variables in
advance. We tested whether a robot acquires gaze
following when it obtains a camera image of a hu-
man face and takes actions on a square table.

We ran simulations where two objects, each of
which is a square having four sections, were arranged
on a square table with 49 sections. The robot ob-
served one of the 18 40×40 pixel grayscale images
indicating di erent directions of the human face. As
codebook vectors for S1, 1600-dimensional vectors
were used. The robot’s actions were represented as
2-dimensional vectors indicating a position on the ta-
ble. We set ( , ζ, ξ) = (1.0, 500, 8.0 × 104). A new
codebook vector was added on a point through two
vectors of the existing vectors in the insertion pro-
cess.

An average of 1.8 CMs was obtained. In over 80%

of the simulations, the following-gaze and return-
ing(after seeing an object) modules were generated.
In the simulations, S1 and M1 were quantized into
an average of 5.2 segments. Fig. 8 shows the changes
in the sensorimotor map from S1 to M1 constructed
by the following-gaze module during a simulation.
When the following-gaze module was generated, the
robot coarsely shifted its gaze to where the caregiver
was looking (Fig. 8(a)). Through the iteration of the
and arrangement and insertion processes, however,
it su ciently acquired a sensorimotor map to follow
the caregiver’s gaze (Fig. 8(b)).
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4.5 Segmentation in presence of perspective
correct visual field

In the above experiments, we assumed that the robot
can see areas of xed size despite the table position.
However, this assumption is not reasonable in the
real world. The size of the area seen by a human
depends on the distance; the closer the area is to the
human, the smaller is the area seen. Therefore, we
investigated whether codebook vectors are arranged
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based on the distance from a robot when it has a
visual eld depending on the distance.

We assumed a 0.5-meter tall robot with a 2.5-
degree eld of view based on the area that a hu-
man fovea covers (Fairchild, 2005). This means that
the robot can simultaneously see about two or three
sections on the table when shifting its gaze around
the caregiver and it can see about one section when
looking at the area around itself. We used the same
experimental setting as in the previous section, ex-
cept for the view eld.

The average number of acquired CMs was 1.6. In
about 60% percent of the simulations, the following-
gaze and returning(after seeing an object) modules
were generated. The number of segments in S1 or
M1 averaged 3.8. Fig. 9 shows the changes in the
sensorimotor map from S1 to M1 constructed by the
following-gaze module after a simulation. S1 and M1

were quantized so that the codebook vectors were ar-
ranged by the distance. This result indicates that the
proposed mechanism enabled the robot to nd rea-
sonable segmentation even when it had to segment a
variable depending on the distance.

5. Conclusion and discussion

We proposed a learning mechanism that found rea-
sonable segmentation to achieve joint attention be-
havior and incrementally acquired it by reproduc-
ing contingency in caregiver interactions. The robot
autonomously categorized sensorimotor activity ac-
cording to a contingency measure based on transfer
entropy. We con rmed that a robot acquired gaze
following and alternation and it found suitable seg-
mentation to reproduce contingency in several con-
ditions including several kinds of di culty.

Developmental psychologists suggested that hu-
man infants gradually develop gaze following abil-
ity (Moore and Dunham, 1995); they only utilize
another person’s head orientation information to
achieve joint attention and slowly realize that the
person’s eyes also direct his/her attention. In our
experiment, the robot quantized sensory (and mo-
tor) variables to nd stronger contingency and grad-
ually quantized S1 that represented the caregiver’s
gaze direction at higher resolution. Finding stronger
contingency may explain how infants develop gaze
following.

In our proposed mechanism, a derivative of C-
saliency C was utilized to modulate the codebook
vectors. We investigated how much C in uenced
this modulation. We ran another simulation using
the same experimental setting as reported in Sec-
tion 4.5, except that C was replaced by a constant
value, C = 1.0. Compared to the result with
adaptive C (Fig. 9), the codebook vectors of M1

were distributed evenly on a table, although the seg-
mentation in M1 with adaptive C was optimized

depending on visual eld. This illustrates that mod-
ulation based on the derivative of C-saliency pro-
motes nding segmentation su cient to reproduce
contingency.

In the experiments, a few components in the vari-
ables such as fr in S1 were given in advance. How-
ever, a robot should quantize all variables without
such a priori knowledge. The segmentation to repro-
duce the contingency of interaction with others may
generate the components given in the experiments.
As future work, we will investigate whether a robot
can autonomously nd suitable segmentation includ-
ing fr and fφ in S1.
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Abstract

In this paper we present the realization
of the formalism we have proposed for af-
fordance learning and its use for planning
(Şahin et al., 2007) on an anthropomorphic
robotic hand. In this realization, the robot
interacts with the objects in its environment
using the programmed push and grasp-and-
lift behaviors, and records its interactions in
triples that consists of the initial percept of
the object, the behavior applied and the ob-
served effect, defined as the difference between
the initial and the final percept. The interac-
tion with the environment allows the robot to
learn object affordance relations to predict the
change in the percept of the object when a cer-
tain behavior is applied. These relations can
then be used to develop multi-step plans us-
ing forward chaining. Our experiments have
shown that the robot is able to learn the phys-
ical affordances of objects from 3D range im-
ages and use them to build symbols and re-
lations that are used for making multi-step
plans to achieve a given goal.

1. Introduction

There exists a representational gap between discrete
symbols used in AI planning and the continuous
sensory-motor experiences of a robot and the means
to bridge this gap remains a long-standing problem in
autonomous robotics. Learning of the mapping be-
tween the sensory-motor readings and these symbols
is one approach that is a part of the so called sym-
bol grounding problem (Harnad, 1990) and has been
studied since the days of STRIPS. The learning stud-
ies in this context typically assume that the planning
symbols are pre-coded, and only the relation of con-
tinuous sensory-motor reading to these symbols are
learned(Klingspor et al., 1996).

On the other hand, (Sun, 2000) argued that sym-
bols “are not formed in isolation” and that “they

are formed in relation to the experience of agents,
through their perceptual/motor apparatuses, in their
world and linked to their goals and actions”. In
fact, these types of views are becoming common
place in robotics as indicated by the increasing
number studies with similar views. For example,
symbol formation in a robot interacting with its
world was studied in (Pisokas and Nehmzow, 2002),
where self-organizing maps were used to cluster low-
level sensory data and to form perceptual states.
The planning is performed by successively predict-
ing the next perceptual states. As will be de-
scribed later on, prediction is also central to our
approach although we believe that rather than
learning the state-to-state transitions, learning the
“change” in the current state could be more bene-
ficial. (Geib et al., 2006) focused on planning and
grounded the pre-defined high-level domain struc-
tures in the form of preconditions and effects. In
our approach, we too address planning; but in ad-
dition, importantly we require that the affordance
relations be learned bottom-up through interaction
with the environment. The affordance notion we
adopt has been adopted by other researchers as
well. For instance, (Fitzpatrick et al., 2003) imple-
mented a system where pushability affordances and
the roll directions of the objects after the application
of the push were learned. (Montesano et al., 2008)
proposed a general probabilistic model based on
Bayesian networks to learn the relationship between
actions, objects, and effects through interaction with
the environment. Given objects and actions (or
any pair of components), the system had the abil-
ity to predict the effect (or the third component).
In (Sinapov and Stoytchev, 2008) the affordances of
the tools attached to the robot arm are learned by
building a hierarchical models for behaviors and their
observed outcomes. In (Griffith et al., 2009), the ob-
ject affordances were learned through interaction for
a task that requires categorization of container and
non-container objects. Although these studies fo-
cused on affordance learning and prediction mech-
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anisms through interaction with the environment,
the use of learned/acquired knowledge has not been
demonstrated for making multi-step plans.

In this paper we attempt to fill this gap by pre-
senting a robotic system that interacts with its en-
vironment for learning the effects of its actions and
representing affordance relations. After the learning
phase, we show that the robot can make non-trivial
multi-step plans involving push and grasp-and-lift
behaviors based on the learned affordance relations.
From a developmental point of view, this learning
phase can be related to development of infants be-
tween 7-11 months, who explore the environment and
learn the dynamics of the objects by hitting, grasp-
ing and dropping them and observing the results of
their actions (Asada et al., 2009).

1.1 Affordances and Robot Control

According to Ecological Psychologist J.J. Gibson
(Gibson, 1986) the organisms do not need to rec-
ognize the action-free meanings of the objects and
make complex inferences over these meanings in
order to act on them. For example we do not need
to identify the objects when we need to interact with
them. Instead, we look for a specific combination
of the object properties taken with reference to us
and our actions in order to detect their affordances.
This introspection is also supported by neurosci-
entific findings. It is known that primate brain
process visual information at in least two pathways:
dorsal and ventral pathways. The ventral pathway
appears to be responsible for object identification;
whereas the dorsal pathway is more involved in per-
ception for action (Culham and Valyear, 2006,
Goodale, 2008, Goodale and Milner, 1992,
Ungerleider and Mishkin, 1982). In particu-
lar, the anterior intraparietal area (AIP) ap-
pears to be the neural basis of manipulation
related affordances as it is involved in compu-
tation of object features relevant for grasping
(Sakata et al., 2005, Oztop et al., 2006).

Recently, we proposed a formalism
(Şahin et al., 2007) for using affordances as a
framework at different levels of robot control
ranging from perceptual learning to planning. The
formalism defines affordances as general relations
that pertain to the robot-environment interaction,
and represented them as triples of (1) the initial
percept of the object, (2) the behavior applied and
(3) the effect produced. For instance, the lift-ability
affordance is represented as a relation between the
(properties of an) object, the behavioral capabilities
of the robot and the effects produced by the lift
behavior.

In this paper we present the realization of this for-
malism on an anthropomorphic robotic hand and
show that the robot interacts with the objects in

its environment and records its interactions as af-
fordance relations and later use them to make multi-
step plans for achieving given goals.

2. Experimental framework

An anthropomorphic robotic system, equipped with
a range sensor, and its physics-based simulator is
used as the experimental platform (Fig. 1). The
robot platform is composed of a five fingered 16
DOF robot hand (Gifu Hand III, Dainichi Co. Ltd.,
Japan) and a 7 DOF robot arm (PA-10, Mitsubishi
Heavy Industries). As for the range sensor, Swiss-
Ranger SR-4000 infrared range finder, with 176x144
pixel array, 0.23◦ angular resolution and 1 cm dis-
tance accuracy was used. The simulator on the
other hand is developed using Open Dynamics En-
gine (ODE) and mainly utilized in training and inter-
action phase because it is not feasible to make large
number of exploratory interactions in the real robot.

The robot is equipped with three push behaviors
and one lift behavior. For all behaviors, the hand
is placed to a ‘reset’ position out of the view of the
camera before and after behavior execution except
for lift . The object position computed from the
range finder is used as parameter by the behaviors
to enable the robot interact with objects placed in
different positions. The hand is wide-open initially
for all behaviors, is clenched into a fist during push-
forward execution, and remains open for other push
behaviors. push-forward , push-left , and push-right
behaviors first place the robot hand at the back, right
and left of the object, respectively. Then, the hand
moves towards object center and pushes the object in
the appropriate direction. In lift behavior, the robot
hand is placed at the back-right diagonal of the ob-
ject first, then moved towards the object and while
this move the fingers are closed to grasp the object.
Afterwards, the closed hand is lifted vertically.

The robot interacts with three types of objects:
boxes, cylinders and spheres, with different size and
orientations. During the execution of push behav-
iors, the robot observes different consequences of its
actions. For instance, when the robot pushes a box
( ) or an upright cylinder ( ), the object is
dragged during the execution of the behavior and
stand still at the end of the action. However, when
the robot pushes a sphere ( ), the object would
roll away and fall down from the table, so at the
end of the action the object disappears. The effect
of a push behavior over lying cylinders ( ) on
the other hand depends on the relative orientation
of the cylinder and direction of the push . The lift
behavior would succeed in lifting an object, if the ob-
ject is within the arm length of the robot and small
enough to fit into the robot hand. However the con-
sequences of the lift behavior execution is not limited
to lifting the objects and can be complex. For exam-
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Figure 1: On the left, the 23 DOF hand-arm robotic platform, infrared range camera and a spherical object placed on

the table are shown. On the right, the range image obtained from the 3D scan and a number of features computed

from this image are given. Note that the subtracted background is blurred.

ple, some spheres can roll-away out of the view after
an attempt to grasp and lift, and the large boxes
are pushed away but remains in the view after lift
behavior execution.

2.1 Perception

Pre-processing: The robot perceives the world
through its 3D infrared range finder which provides
the depth values in a range image and the 3D po-
sitions of the corresponding pixels. First, the range
image is subtracted from the background image that
was obtained from an object-free environment. The
resulting image is segmented and the remained re-
gion is assumed to belong to an object. In the ex-
periments reported in this paper only one object is
presented to the robot. In order to reduce the effect
of noise, the pixels at the boundary of the object are
removed and then median and Gaussian filters with
5x5 window sizes are applied. Finally, the object fea-
tures are computed using the depth values and 3D
positions corresponding to the object pixels.

Object feature vector computation: The per-
ception of the robot at time t is denoted as f t

o, where
o is the object label and f is a feature vector of
size 53. Height, width and depth are used as dimen-
sion related features of the object. Closest, furthest,
left-most and right-most points of the object are ex-
tracted and their 3D positions are included into the
feature vector. The average distance of the pixels are
used as the distance feature of the object. As shape
related features, distribution of the local surface nor-
mal vectors of the object pixels are used. Specifically
frequency histograms of normal vector angles in lati-
tude and longitude are computed and used as follows.

The normal vectors of the local surfaces for all pix-
els are computed using any two neighbors of the cor-
responding pixel:

Nr = (pr1
− pr) × (pr2

− pr)

where r, r1 and r2 represent indexes of the pixel, and
two neighbor pixels, and p corresponds to 3D posi-
tion. The direction of each normal vector is recorded
in two base-dimensions, latitude and longitude. Two
angular histograms are computed for each of these
dimensions and the histograms are sliced into 18 in-
tervals of 20◦ each. Frequency values of angular his-
tograms obtained from normal vectors of the surface
points in the region are used as 36 shape-related fea-
tures. This representation encodes the distribution
of the local surface normal vectors of the object.

In some situations (after execution of some behav-
iors) the object can move out of view. So we included
a boolean object visibility feature in the feature vec-
tor to represent this qualitatively different situation.

Effect feature vector computation: For each
object, the effect created by a behavior is computed
as the difference between the final and initial fea-
tures:

ξbi
o = f ′

o − fo

where ξbi
o , f ′

o and fo represents the effect, final and
initial feature vectors, and bi represents the behavior
executed.

3. Learning of affordance relations

During the interaction phase, the robot interacts
with the environment and in each interaction a rela-
tion instance of the form (ξbi

o ,fo, bi) is created. Af-
ter interaction phase is completed, by using effect
instances ({ξbi

o }) that are obtained from all different
objects, similar effects are grouped together to get
a more general description of the effects that each
behavior can create. This grouping is done using X-
means clustering algorithm and for each cluster an
effect-id is assigned. The associated effect prototype
for the cluster is defined as the mean of the cluster,

denoted as ξ̄
bi . Hence, for a given ξ, the correspond-
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Figure 2: The Predict- operator that is trained to pre-

dict the next state of an object based on the predicted

effect of applying behavior bi.

ing effect-id (c) can be found as:

cξ = argmin
1≤i≤k

‖ξ − ξ̄i‖ (1)

where 1 ≤ i ≤ k is the cluster index.
Formally, the mapping between the object features

and the effects created by a particular behavior bi is
learned by a classifier (χbi) using the data set:

Tbi = {(fo, cξ
bi
o

)}

where fo is given as the input feature vector to the
classifier χbi , and c is the corresponding target ef-
fect category. Specifically, we used a Support Vector
Machine (SVM) classifier with linear kernel to learn
this mapping for each behavior bi using this training
set1. After training, predicted effect category can be
found without applying behavior bi to an object with
perceptual features fo by:

cpredicted(bi, o) = χbi(fo)

The predicted percept of the object after the ap-
plication of the behavior can then be computed as
(see Fig. 2):

f ′

o({bi}) = fo + ξ̄
bi

cpredicted(bi,o)

4. Planning

The learned affordance relations can be used as op-
erators for planning.

States A state is represented with the object fea-
ture vector that is perceived or expected to be per-
ceived after execution a number of behaviors in t
steps:

St
{bi

1...bi
t−1} = f t

o,{bi
1...bi

t−1}

where o corresponds to the perceived object, and
f t

o,{bi
1...bj

t−1} is the expected percept after execution

of the behavior sequence {bi
1 . . . bj

t−1}.

1For this study, the LibSVM software is used. In

(Uğur et al., 2007) we showed that the method is not con-

strained to batch learning and the training can be done in

an online manner. The number of samples were minimized in

online version by selecting the most interesting situations for

interaction instead of random exploration.

Actions The pre-coded behaviors; namely the
three push behaviors and the lift behavior, consti-
tute the actions. Different from standard techniques,
the actions do not have any pre-conditions and their
description does not include pre-defined state tran-
sition rules. All actions are applicable in all states,
where the next state depends on the learned effect
prediction operators summarized in Fig. 2.

St
{bi

1...bj
t−1}

bk
t

−−−−−→St+1

{bi
1...bk

t}

Goals A goal is specified as a partial state, in terms
of values of some object features within states. The
user can define a goal based on feature values of the
object. For example, the state that includes an ob-
ject feature vector with dmean = 0.8m will satisfy
the goal of move object to 0.8m distance. As another
example, the goal of pick-up a particular object is
satisfied in a state, where the closest-point z feature
value of the corresponding object is large (zc > 0.3m)
in the range image.

Plan generation Forward chaining is used to gen-
erate totally ordered plans starting from the initial
state. This process can be viewed as the breadth-
first construction of a plan tree where the branching
factor is the number of behaviors. The next states
are computed using the prediction operator in Fig. 2.
If the state in any time step satisfies the goal, the se-
quence of the behaviors which lead the initial state
to the goal is accepted as a potential plan.

5. Experiments

The learning experiments are conducted in the
physics based simulator and the results are tested in
the real robot. As shown in Fig. 1, a table is placed in
front of the robot both in simulation and real world.
In the beginning of interactions, one random object
o (among , , , ) is placed on the ta-
ble, in a random orientation and size [20cm−40cm].
The robot makes 3D scans before and after executing
one of its behaviors (bi) to compute the object (fo)
and effect (ξbi

o ) feature vectors. After the behavior
is applied, if the object is still visible and if there is
change in the object features, another random be-
havior is applied. Otherwise, the object should have
been fallen down the table or it is out of reach of
the arm, so the object is removed and a new random
object is placed. For all behaviors, approximately
1000 interactions are simulated. The resulting set of
relation instances are then used in training.

5.1 Discovered effect categories for push

After robot-environment interactions are completed
and affordance relations instances are collected, X-
means algorithm found 5 effect categories for each
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Table 1: EC
p
i represents ith effect category of push-

forward behavior. In (a), selected feature values of the

corresponding effect prototypes are given. The magni-

tude of the arrow corresponds to the size of the change

in feature value, whereas whether the feature is increased

or decreased can be figured out by arrow’s direction. In

(b), in which situations such effect categories are formed

is explained. The number of the object types appear

during interactions are given in the first four column, the

average real width and distance of the objects in those

interactions are given in the last two columns.

V
is

ib
il

it
y

W
id

th

Y
 P

o
s

Z
 P

o
s

EC p
2

EC p
1

EC p
3

EC p
4

EC p
5

X
 P

o
s

Width Dist

EC
p
1

0 45 40 65 17.0 86.3

EC
p
2

0 0 0 55 23.1 90.8

EC
p
3

0 85 15 20 17.3 94.1

EC
p
4

125 10 175 15 17.5 88.8

EC
p
5

50 90 170 40 18.1 124.4

(a) Effect features (b) Info. on objects

push behavior. In this section, the effect categories
are interpreted by inspecting particular feature val-
ues of the corresponding effect prototypes and by
identifying the situations in which these categories
are generated. In all three push behaviors, similar
categories are formed so here we present only push-
forward behavior. Table. 1(a) gives selected fea-
ture values from effect prototypes formed for push-

forward , ξ̄
push−forward
i where 1 ≤ i ≤ 5. In other

words, the amount of change in different features is
provided. Table 1(b) summarizes the situations in
which effect categories are generated. The interpre-
tation of effect categories is as follows:

• As seen in the Table. 1(a), no effect in any fea-
ture is monitored in ECp

5 . When initial average
distance of the objects is examined for ECp

5 from
Table 1(b), it is found to be around 124.4 cm
which corresponds to out of the range points. So
the robot discovers interaction range of its push
behaviors and represent it in ECp

5 .

• Visibility of objects drop from 1 to 0 in ECp
4 ,

which means the objects fall off the table in these
situations. This can happen when the objects
are pushed and rolled away out of the table. In-
deed when the types of the object are inspected
in Table 1(b), it is seen that significant number
of spheres and lying cylinders create this effect
category. Small number of boxes (10) and up-

Table 2: EC
p
i represents ith effect category of lift behav-

ior. For further explanation please see Table 1.

V
is

ib
il

it
y

W
id

th

Y
 P

o
s

Z
 P

o
s

EC l
2

EC l
1

EC l
3

EC l
4

EC l
5

X
 P
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Width Dist

EC
l
1 60 10 85 0 16.7 90.0

EC
l
2 0 30 5 45 11.5 88.7

EC
l
3 55 75 160 105 17.8 122.4

EC
l
4 0 90 5 40 20.6 94.3

EC
l
5 65 25 95 50 20.8 88.7

(a) Effect features (b) Info. on objects

right cylinders (15) are also included in the ECp
4

because either they fall down from the edge of
the table when pushed or they were at the robot
hand as the result of previous lift behavior. When
push-forward is activated, all robot angles includ-
ing fingers are set to their initial positions, the
hand will be opened and the object will drop from
the hand and fall down to the ground. Note that
the later effect of object drop is an emergent one,
ie. the release behavior is not deliberatively in-
tended by the behavior designer. This emergent
effect category will play a major role during plan-
ning in Section 5.3.

• In ECp
1 , ECp

2 and ECp
3 , the Z position of the

objects is increased as the result of push-forward
behavior and at the end of interaction the ob-
jects still remain visible as seen in the Table 1(a).
When the object types are inspected, it is seen
that these effect categories are produced mostly
by boxes and upright cylinders. Such effects are
not generated when the object is a sphere because
spheres always roll-away when pushed, but some
lying cylinders can lead to these effects because
different orientations of lying cylinders afford ei-
ther rollability or pushability.

5.2 Discovered effects categories for lift

Lift behavior, although not represented differently
in robot’s behavioral repertoire, is conceptually dif-
ferent from push behaviors, so the effect categories
for lift behavior are interpreted separately. The fea-
ture values of effect prototypes and the situations
in which effect categories are generated are given in
Table 2 and the interpretation is as follows:

• ECl
3 describes effects that do not change signif-

icantly at all and corresponds to not-reachable
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objects. This effect category is similar to ECp
5

for push-forward behavior.

• In ECl
5 , the objects become invisible during ex-

ecution of lift behavior. Disappearing from the
view was not expected and against our intention
in lift behavior. There are two different type of
situations for existence of such an effect. First,
the object may be already in robot hand before
execution of lift behavior so the initialization step
of lift can result in falling the object off to the
ground. Second, the rollable large objects can-
not be grasped by robot hand, but they will be
dragged and rolled down the table. The second
reason explains the existence of large number of
spheres and lying cylinders in ECl

5 .

• In ECl
4 , the height of the object (Y pos) does not

change, but its position with respect to the robot
changes. In other words, the object is not lifted,
but dragged over the table. This effect is created
by large ungraspable objects. Different from ECl

5

(previous item), they are not rollable. This claim
is supported by large number of boxes (90) and
lying cylinders (40) in ECl

4 , and relatively large
average width of the corresponding objects (20.6
cm).

• In ECl
1 and ECl

2 , the height of the objects (Y
Pos) are increased, so these effect categories cor-
respond to situations where objects were actually
lifted. One significant difference between two cat-
egories is on the change of perceived width of the
objects. The perceived width of the object is de-
creased more in ECl

2 probably because it is better
covered inside hand. Based on the actual average
widths of the objects for these effect categories,
smaller objects are seen to create ECl

2 . This
is consistent with the explanation in decrease of
perceived width because small objects are better
grasped and tend to disappear inside hand.

5.3 Learning affordances and planning

After effect categories are discovered, the mapping
from initial features to these categories are learned
by training SVM classifiers χbi for each behavior. 800
interactions are used in training and a separate set of
200 interactions are used in testing the classifiers. At
the end, in predicting correct effect categories around
90% accuracy is obtained for different behaviors.

The planning capability, which is based on the
learned affordance prediction system, is tested and
demonstrated in the real robot platform. The robot,
infrared range camera, and table are placed similar
to the simulated interaction environment. A system
with three main modules, namelyPerception, Plan-
ner and Execution Control, are used for online ver-
ification of the approach. The Perception Module

is connected to the infrared range camera and is re-
sponsible for computing the object features and send-
ing them to the Planner Module. Moreover, the Per-
ception Module informs the Execution Control Mod-
ule about the position of the objects for behavior
parameterization. The Execution Control Module on
the other hand receives a sequence of behaviors (a
multi-step plan) from the Planner Module and exe-
cutes the behaviors one by one using the positions
received from the Perception Module. The Execution
Control Module also informs the Planner when the
plan is completed. When the plan completed sig-
nal is received, the Planner Module is responsible for
sending a new multi-step plan to the Execution Con-
trol using the object features from the Perception.
In fact, the Planner Module generates plans continu-
ously but sends the plans only when plan completed
signal is received. Continuous plan generation en-
ables the Planner to monitor whether the execution
of the original plan proceeds as planned or not. This
system is tested with different objects and object
placements for two different goals.

Keep the table clean The motivation of the first
case study is to keep the table clean. In order to sat-
isfy this goal, the desired value for object-visibility
feature is set to be 0 (or false). So the planner needs
to find a sequence of behaviors which leads to an ob-
ject state with that particular feature value 0. The
snapshots taken from this experiment are provided in
Fig. 3. When a ball is placed in the middle of the ta-
ble, the Planner Module selects push-right behavior
and after the behavior is executed, the ball rolls away
and falls off the table. When an upright cylinder is
placed almost in the same place, the Planner Mod-
ule generates a two-step plan (lift and push-forward
). First lift behavior is executed and the object is
lifted. Later, push-forward is activated, so the arm
and hand joints need to move to their original (ini-
tial) position. During the initialization of the behav-
ior, the hand opens and the object falls down. As we
discussed earlier, this is rather an emergent behavior
that was not planned by behavior designer but dis-
covered by the learning system. In other situations
when the object is placed at the edge of the table,
push-right or push-left behaviors are selected and the
object is pushed off the table. This experiment ver-
ifies that affordances related to physical characteris-
tics of the objects (ball and upright cylinder). More-
over, the characteristics of the environment are also
learned through interaction and system makes differ-
ent plans based on different positions of the cylinder.

Bring the object to a target position The task
in this case study is to bring the object to a de-
sired position. The goal is defined over three feature
values, that correspond to the 3D position of the ob-
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Figure 3: The table is kept clear by setting a desired state where object-visibility feature is 0.

The corresponding movies can be downloaded from
http://www.kovan.ceng.metu.edu.tr/~emre/epirob09.

Figure 5: A plan is executed for the task of bringing the

object to the target position represented by X.

ject’s closest perceived pixel. In the first experiment,
the target is set as a point on the table and is shown
with a cross (X) in Fig. 4. The object is placed at the
back and on the right side of the target from robot’s
view. In this case, the Planner Module generates a
4-step plan which is composed of push-left , push-left
, push-forward , push-forward . After the plan is ex-
ecuted successfully, the same object is placed on the
left side of the target from robot’s view, closer to the
robot when compared to previous case. The 4-step
plan that is composed of one push-right and three
push-forward behaviors is also executed successfully.
In both cases, the exact order of behaviors is not im-
portant and in fact many different 4-step plans are
generated with same behaviors arranged in different
orders.

A more complex task description is given in Fig-
ure 5 where also desired height of the object is pro-
vided in the goal state. In this case, the Planner gen-
erates a 3-step plan composed of two push-forward
and one lift behaviors. Different from previous case
where target position is on table, only one plan with
this particular order is generated because a push-
forward behavior executed after lift behavior has the
emergent effect of dropping the object from hand.

6. Conclusion

In this paper, we have shown that an anthropomor-
phic robotic hand can learn the physical affordances
of objects from range images and use them to build
symbols and relations that can be used in making
multi-step predictions about the affordances of ob-
jects and achieve complex goals.

First, the robot is shown to discover different ef-
fect categories that represent qualitatively different
set of situations in a completely unsupervised man-
ner. Furthermore, some effects were not intended
by the behavior designer but emerged during inter-
actions. For example, although no ‘release’ behav-
ior is implemented explicitly, the robot is shown to
drop the object from hand during initial stage of the
push-forward behavior if the the robot was holding
the object in its hand.

The mapping between object features and effect
categories are later learned by training classifiers
which are used to form basic prediction operators.
In two case studies, the knowledge that is acquired
through learning in the simulator is directly trans-
ferred to the real robot. The robot generated multi-
step plans for both table cleaning and object moving
tasks and executed successfully. Because the robot
formed the prediction operator based on its sensory-
motor experience, it was able to make grounded and
sometimes unexpected emergent plans for the same
goal in different situations. These experiments veri-
fied that physical properties of the objects and char-
acteristics of the environment are reflected in the
learned affordances and generated plans. In future,
the method will extended to multi-object environ-
ments and more complex non-discrete behaviors.
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Figure 4: Different plans are executed in different situations for the task of bringing the object to the target position

represented by X.
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and Üçoluk, G. (2007). To afford or not to af-
ford: A new formalization of affordances toward
affordance-based robot control. Adaptive Behav-
ior, 15(4):447–472.

Culham, J. C. and Valyear, K. F. (2006). Human
parietal cortex in action. Current Opinion in
Neurobiology, 16:205–212.

Fitzpatrick, P., Metta, G., Natale, L., Rao, A.,
and Sandini, G. (2003). Learning about objects
through action -initial steps towards artificial
cognition. In Proc. of ICRA 03, pages 3140–
3145.

Geib, C., Mourăo, K., Petrick, R., Pugeault, N.,
Steedman, M., Krueger, N., and Wörgötter, F.
(2006). Object action complexes as an interface
for planning and robot control. In Workshop:
Towards Cognitive Humanoid Robots at IEEE
RAS Int Conf. Humanoid Robots. IEEE RAS.

Gibson, J. (1986). The Ecological Approach to Vi-
sual Perception. Lawrence Erlbaum Associates.

Goodale, M. A. (2008). Action without perception
in human vision. Cog Neuropsycho, 25:891–919.

Goodale, M. A. and Milner, A. D. (1992). Sepa-
rate visual pathways for perception and action.
Trends Neurosci, 15:20–25.

Griffith, S., Sinapov, J., Miller, M., and Stoytchev,
A. (2009). Toward interactive learning of object

categories by a robot. In Proc. of 8th ICDL,
Shanghai, China.

Harnad, S. (1990). The symbol grounding problem.
Physica D, 42(1-2):335–346.

Klingspor, V., Morik, K., and Rieger, A. D. (1996).
Learning concepts from sensor data of a mobile
robot. Machine Learning, 23(2-3):305–332.

Montesano, L., Lopes, M., Bernardino, A., and
Santos-Victor, J. (2008). Learning object affor-
dances: From sensory–motor maps to imitation.
IEEE Transactions on Robotics, 24(1):15–26.

Oztop, E., Imamizu, H., Cheng, G., and Kawato,
M. (2006). A computational model of ante-
rior intraparietal (aip) neurons. Neurocomput-
ing, 69:1354–1361.

Pisokas, J. and Nehmzow, U. (2002). Experi-
ments in subsymbolic action planning with mo-
bile robots. Technical report.

Sakata, H., Tsutsui, K. I., and Taira, M. (2005).
Toward an understanding of the neural process-
ing for 3d shape perception. Neuropsychologia,
43:151–161.

Sinapov, J. and Stoytchev, A. (2008). Detecting
the functional similarities between tools using a
hierarchical representation of outcomes. In Proc.
of 7th ICDL.

Sun, R. (2000). Symbol grounding: A new look at
an old idea. Philosophical Psychology, 13(149–
172).

Ungerleider, L. G. and Mishkin, M. (1982). Two
cortical visual systems, pages 549–586. Cam-
bridge MA: MIT Press.
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Introduction

With the recent progress of learning by imitation,
learning by doing or learning by demonstration, it
now begins to be possible to teach to robots how to
learn complex skills. Because of the complexity of
the the skills, most of the technics use iterative or
step by step procedures, allowing to refine the skill
or the behavior through multiples demonstrations.
In this scope, an important progress still needs to be
done if we wish to obtain intuitive interactions, and
confide the teaching of the robot to a non expert,
or somebody that would not have to learn any ex-
plicit procedure or interface to indicate to the robot
if it has succeeded or not to exhibit the right out-
put. More fundamentally, we still have to under-
stand what are the right mechanisms allowing the
establishment of a ”natural” turn taking between hu-
man and artificial systems, allowing to obtain robust
interactions and an e�cient support for long learn-
ing procedures. In this paper, we will show that a
simple sensory-motor system detecting the rhythm
of its own movements, is able to build an internal
reinforcement signal that can, in turn change the
weights of its own input-output associations. We will
first explain our pluri-dicsiplinary motivation, and
how developmental psychology highlights the impor-
tance of synchrony and rhythm detection in interac-
tive situations. We will then show how a robot using
rhythm detection can learn from a human a set of
sensory-motor associations without any explicit re-
inforcement signal or teaching interface nor notion
of agency included in the robot’s architecture.

Pluridisciplinary motivation

Our work is inspired by noticeable studies in de-
velopmental psychology analyzing the young in-
fants abilities to detect changes in the other’s re-
sponses during face to face interactions. Since
1978, the Still face paradigm, introduced by Tron-
ick et al has been widely used and studied (see
(Nadel and (Eds.), 2005) for a review) especially
during pre-verbal interactions. A Still face consist

in the production of a neutral, still face of the care-
giver after a few minutes of interactions. Interest-
ingly, this sudden break of the response and the
timing of the interaction induce a fall of the in-
fant’s positive responses. The same responses where
also measured with the more accurate Double Video
paradigm allowing to shift the timing of the in-
teraction using a dual display and recording sys-
tem (Nadel et al., 2005). In this second paradigm,
the content of the care giver’s responses remain the
same as in a normal interaction, but a more or less
long decay can be introduced in the display of the
mother’s responses. The results highlight the impor-
tance of the timing of the response and shows how
synchrony and rhythms are fundamental parameters
of early interactions. Breaking the timing results
in violating the infant’s expectations, and produces
the fall of positive responses with increasing negative
ones.

Model

We are interested in studying how these changes can
be detected and used to build internal values useful
for learning and interaction. Our main working hy-
pothesis is that during a face to face interaction com-
posed of simple gestures (for example an imitation
game) a constant rhythm should naturally emerge if
the interaction goes well (that is to say, if the robot’s
responses correspond to the human’s expectancies).
Conversely, if the robot produces the wrong behav-
ior or the wrong responses, we suppose that the hu-
man may introduce more breaks in the interaction,
for example to take the time to restart the game,
manifest his dissatisfaction (even if the robot is not
able to process any signal concerning this dissatisfac-
tion), or simply stopping the interaction. To illus-
trate how these hypothesis can be used, we propose
a simple face to face interaction. The visual space
of the robot is split in in di↵erent areas stimulated
by the gestures of the human. When stimulated, one
visual area triggers one gesture from a part of the
robot’s body. At the beginning of the experiment
the connections between the Input layer (visual ar-
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Figure 1: Model for rhythm detection and prediction. A

reinforcement value is built when comparing the value of

the input with the prediction activity of the rhythm

eas) and the Output layer (motor response) are ran-
dom. This very elementary sensory-motor network
ensures that the robot gives a response every time
it is stimulated by the human : it bootstraps a sim-
ple turn taking interaction. The goal of the game is
to teach the robot to perform an imitation without
explicit reinforcement, that is to say to teach how
to produce the motor responses that mirrors the hu-
man’s gestures. During the interaction, the robot
has to explore its motor repertory and reinforce the
mirror actions. This reinforcement is done by a Sut-
ton and Barto rule on the output group, allowing
at the same time to explore and propose di↵erent
Output actions and to strengthen the correct Input-
output associations. Because no explicit reinforce-
ment is given, the system builds from the interaction
rhythm its own internal reinforcement value. Inter-
estingly, the rhythm of the whole interaction can be
extracted from the rhythm of self action. The sys-
tem processes the sum of proprioceptive information
from self gestures, always triggered by the human’s
gestures. Consequently, we can have a reliable in-
formation about the whole dynamics of the interac-
tions by monitoring only the flow of self actions. A
neural network learns the rhythm of the interaction
and tries to predict the timing of the next motor
action(see Fig 1). One EC neurons fires at the be-
ginning of new actions (detects proprioception devi-
ation). DG group decomposes the time elapsed be-
tween EC spikes, with multiple cells responding at
di↵erent timing and with di↵erent time span (it sim-
ulates the response of cells of di↵erent sizes to the
same EC stimulation). One CA cell learns the asso-
ciation between the state of the DG cells (the time
elapsed since last action) and the new EC activa-
tion (the current action). After one learning, a sole
activation of the DG cells produces an increasing ac-
tivity of CA which tops at the instant corresponding
to the predicted period of EC. At last, comparing
CA and EC activities allows to obtain a continuous

prediction of the rhythm. This comparison is then
used as the reward R(t) for the Sutton and Barto
group. We have tested this model according to two

Figure 2: Up: Setup of the ”mirror imitation” game with

Aibo. Bottom: score corresponding to the learning of 10

Input-Output associations (that mean 100 di↵erent asso-

ciations to explore). We can notice that the first associ-

ation (score of 1) is the most di�cult to discover. Once

the first correct association is learned, it is often used

as a basis for the interaction, thus allow the establish-

ment of a constant rhythm and facilitating the discovery

of further associations.

di↵erent experimental setup. A first setup was de-
voted to test the robustness and convergence of the
of the architecture with large amounts of associations
between key strokes and sounds (100 possible Input-
Output associations). A second setup used a Sony
Aibo robot, with the goal of discovering and learn-
ing 4 associations between the human gestures and
the robot’s responses (the imitation game). In future
works, we are (1) extending the model to robots re-
sponses of very di↵erent temporality (how to extract
the rhythm of the interaction when actions of the
robot are of di↵erent lasting), and (2) comparing the
convergence of di↵erent Learning algorithms (Sutton
and barto vs probabilistic learning rule algorithms).
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Abstract

This short paper presents the core ideas of
the IM-CLeVeR Project. IM-CLeVeR aims at
developing a new methodology for designing
robot controllers that can: (a) cumulatively
learn new skills through autonomous develop-
ment based on intrinsic motivations, and (b)
reuse such skills for accomplishing multiple,
complex, and externally-assigned tasks. This
goal will be pursued by investigating three
fundamental issues: (a) the mechanisms of
abstraction of sensorimotor information; (b)
the mechanisms underlying intrinsic motiva-
tions; (c) hierarchical architectures that per-
mit cumulative learning. The study of these
issues will be conducted on the basis of empir-
ical experiments run with monkeys, children,
and human adults, with bio-mimetic models
aimed at reproducing and interpreting the re-
sults of such experiments, and through the de-
sign of innovative machine learning systems.
The models, architectures, and algorithms so
developed will be validated with experiments
and demonstrators run with the simulated
and real iCub humanoid robot.

1. Introduction

How can we create truly intelligent and autonomous
machines and robots? This goal has both a huge
technological and scientiflc importance. As a tech-
nology, autonomous intelligent machines can be ex-
ploited, for example, to perform repetitive tasks that
humans do not like to carry out and conduct mis-
sions in hostile environments. On the scientiflc side,
the ability to construct truly intelligent machines can
shed new light on the mechanisms underlying learn-
ing and intelligence of humans and other primates,
thus also enabling better treatments of psychiatric
and neurological disorders.

The IM-CLeVeR project aims at developing a new
design methodology for building autonomous intelli-
gent robots based on intrinsically-motivated cumu-
lative learning of skills. The central idea behind this
new design methodology is that, instead of directly
programming, training or evolving a set of speciflc
skills in robots, we should endow them with develop-
mental programs that allow an autonomous develop-
ment of the needed skills on the basis of prolonged
periods of interactions with the environment under
the guidance of intrinsic motivations. Robots could
then use the general abilities so acquired as building
blocks for the solution of tasks that are relevant for
the robot’s users. Notice how these types of processes
mark some of the most intelligent aspects of complex
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organisms’ behaviour, in particular human and non-
human primates. For example, children at play carry
out several activities driven only by intrinsic motiva-
tions such as curiosity. These activities allow them to
acquire knowledge and skills exploited in later adult
stages to pursue useful goals. The main objectives
of the project will be pursued with these phenomena
in mind.

2. Research issues

The central working hypothesis of the project is that
cumulative, open-ended learning in artiflcial systems
must be based on three fundamental principles:

1. Hierarchical architectures. Cumulative learn-
ing architectures for controlling robots should
have the capability of developing sensorimotor
and cognitive skills in an incremental hierarchi-
cal fashion. This requires: (a) acquiring skills
and systematically increasing their complexity;
(b) learning new skills using previously acquired
skills as building blocks; (c) storing new skills
without forgetting (and possibly improving) pre-
viously acquired ones.

2. Novelty detection and intrinsic motivations. A
cumulative learning robot needs internal drives
that focus learning on skills that: (a) are novel
for the robot; (b) are within the robot’s ‘zone
of proximal development’ that is the robot has
the drive to learn new skills that can be acquired
on the basis of those already in its repertoire.
To achieve this, the robot should be endowed
with ‘intrinsic motivations’ that lead it to au-
tonomously engage in activities that produce the
maximum learning rate and/or information gain.
Internal motivations difier from external motiva-
tions and rewards as the latter are associated with
the practical outcomes that actions produce on
the external world (e.g., food or sex in organisms
or accomplishment of users’ goals in robots). In-
trinsically motivated learning must rely on ‘nov-
elty detectors’, devices capable of monitoring and
measuring the level of subjective novelty of action
outcomes and learning rates so as to focus robot’s
activity on suitable experiences and boost learn-
ing speed.

3. Sensory abstraction and attention. Although sen-
sory abstraction is a widely-investigated topic in
cognitive sciences (e.g. in computer vision), the
project will aim at isolating and studying the par-
ticular problems of abstraction related to the spe-
ciflc topics of the project, namely novelty detec-
tion and hierarchical architectures for cumulative
learning.

3. Objectives

IM-CLeVeR has four main scientiflc and technologi-
cal objectives:

1. To advance our knowledge about how cumulative
learning is achieved in natural organisms. To this
purpose, the project involves the implementation
of empirical non-invasive experiments on intrin-
sically motivated learning in monkeys, children,
human adults, and Parkinson patients, on the ba-
sis of novel experimental paradigms suitable for
studying exploration, novelty detection, and the
(cumulative) acquisition of novel actions .

2. To advance our knowledge about the mecha-
nisms underlying intrinsically motivated cumula-
tive learning in natural organisms. To this pur-
pose, the project will develop bio-mimetic mod-
els (including both computer simulations and
robotic experiments) aiming at reproducing and
explaining the empirical flndings provided by the
aforementioned empirical experiments. In addi-
tion to its scientiflc value, this efiort will also
allow isolating new computational principles ex-
ploitable in robots.

3. To develop new machine learning techniques, ar-
chitectures, and learning algorithms for the opti-
mal design of cumulative learning robots. In par-
ticular, the project will aim at making substantial
progress in the three distinct but related princi-
ples of the project working hypothesis: (a) hier-
archical architectures, (b) intrinsic motivations,
and (c) perceptual abstraction and attention.

4. To integrate the knowledge gained by the empir-
ical experiments, the bio-mimetic computational
models developed to interpret them, and the ma-
chine learning architectures and algorithms for
building real robots demonstrating cumulative
learning abilities. This challenge will involve
the use of three iCub humanoid robotic plat-
forms for the development of two demonstrators:
CLEVER-K, a technologically-oriented demon-
strator that will be tested in a kitchen scenario,
and CLEVER-B, a demonstrator with which will
be used to reproduce and interpret the results of
the experiments carried out with monkeys and
children.

Acknowledgements

IM-CLeVeR is supported by the European Commis-
sion under the ‘FP7 Cognitive Systems, Interaction,
and Robotics Initiative’, grant no. 231722.

190



Emotion Non Verbal Behavior Modeling: Low and High Exhibitors 
 

Stefania Balzarotti and Rita Ciceri 
Laboratory of Communication Psychology, Università Cattolica, Milano 

stefania.balzarotti@unicatt.it; rita.ciceri@unicatt.it 
 
 

Abstract 

The key role that emotion non verbal behavior may 
play in the interaction between human and artificial 
agents, including anthropomorphic robots, is today 
well-known. Within this broad research area, this study 
took into consideration the role of the individual style 
in emotion multimodal expression as a relevant feature 
to achieve an effective and natural emotional 
interaction between human and robot. We analyzed the 
multimodal emotional behavior of 163 human subjects 
who were watching an emotional disgusting film 
(Gross, 1998). All subjects were asked to answer three 
questionnaires to assess their dispositional regulatory 
strategies. Results showed: (1) different use of multiple 
behavioral categories; (2) strong inter-individual 
variability among low and high exhibitors; (3) 
significant differences with respect to individual styles 
of regulation and coping, when their measure is highly 
contextualized. All these factors should be considered 
when modeling emotion.  
 

1. Introduction 
 
The development of robots and artificial agents is 
driven today by new application domains where the 
ability of the embodied agents to interact with people 
as veritable partners may be crucial to achieve efficacy 
(Breazeal, 2003). Within this research field, it has been 
soon clear that emotional behavior plays a key role to 
regulate the HM interaction (Picard, 1997). Research 
has developed to provide computers with emotional 
skills: emotion simulation aims at the implementation 
of artificial embodied agents capable to reproduce 
human emotional expressions, e.g. robots and ECAs 
able to support the natural communication modalities 
of humans (Breazeal, 2003); on the other side, emotion 
decoding is meant to design agents able to recognize 
the user’s emotional responses from real-time capturing 
of multiple signals. 

Whatever the research goal is, modeling emotions and 
non verbal expression has revealed a demanding 
challenge and research is still far from supporting the 
complexity and the multimodal richness of human face-
to-face communication. In this study, we considered 
two open issues. First, an essential property of human 
emotional non verbal behavior is multimodality: for this 
reason, computation research has based empirical 
investigation on the combination of multiple modalities 

collecting various body measures in the attempt to 
reproduce the multimodal richness of the emotional  
process. 

Second, emotion and non verbal expression emerge as 
a result of the interaction of an embodied system with a 
physical and social environment and are subjected to 
developmental processes. In other words, development 
and interaction give rise to individual styles of emotion 
expression: if the goal is to achieve the implementation 
of robots and artificial agents able to behave like 
humans – and whose behavior is governed by the same 
principles – individual differences in emotion 
expression should be considered in modeling those 
agents. Moreover, individual styles clearly appear as 
crucial in emotion recognition as well. For instance, in 
has been showed that non verbal expression is highly 
influenced by regulatory strategies (Gross, 1998).  

 

Method 
 
Sample:163 nursing students (age: M=22,5; SD=4,47; 
M=28; F=135; 82,8% women) were recruited from the 
Faculty of Nursing Sciences of the Bicocca University 
in Monza and Lecco. The study employed nursing 
students since the surgery displayed by the stimulus 
belongs of their professional experience and learning. 

Stimuli: A baseline clip that elicited very little emotion 
of any kind (a documentary); an emotional film clip (1 
min) showing the amputation of an arm, which had 
elicited self-reported disgust in previous studies (Gross, 
1998). Given our sample, a wider range of emotions 
could be expected, such as interest. 

Dispositional measures: All subjects were previously 
asked to answer three questionnaires to monitor their 
regulatory and coping styles: two well-validated 
inventories (ERQ, COPE) tested general regulatory 
strategies and one questionnaire structured ad hoc for 
the study (Level of Distancing) assessed coping 
strategies in front of contextualized events belonging to 
a nurse experience (death of patients).  

Behavioral measures: A camera recorded participant’s 
face and upper body movements. Behavior was rated 
using the Behavioral Coding System (BCS, Ciceri and 
Balzarotti, 2008). The BCS is a multimodal system 
constituted by different macro-categories: face (divided 
into upper face, lower face and lip movements), gaze 
direction, posture, head movements, and vocal behavior 
for a total of 52 behavioral units scored. The 163 
videos were rated by two coders (The Observer XT 7.0) 
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who received an extensive training in the use of this 
coding system to achieve adequate levels of inter-rater 
reliability (Cohen’s K= .89).  

 

Results 
 

Frequency rates were extracted and computed for each 
macro-category (mean score). Considering the overall 
sample, significant differences between baseline and 
amputation clips were found for all categories [average 
Z=-4.821, p<.001], except for posture and head 
[average Z=-.767, p>.05].  
Secondly, we focused on upper and lower face 
categories, where the greatest (positive) difference with 
respect to the baseline clip had emerged, and computed 
a global rate for face. Facial units were characterized 
by a highly-dispersed non-normal frequency 
distribution and the sample could be clearly divided 
into three groups. The first group (Non-Exhibitors, 
30%) included subjects who didn’t show any facial unit 
at all: this group totally suppressed facial behavior 
during the amputation clip showing significantly less 
facial behavior than during the baseline [Z=-4.908, 
p<.001]. The second group (Low Exhibitors, 42%) 
included subjects who showed a number of facial units 
below the mean (M=0.62); baseline and amputation 
clips significantly differed for upper face [Z=-3.743, 
p<.001] but not for lower face [Z=-1.153, p>.05]. The 
third group (High Exhibitors, 28%) included subjects 
who showed a number of facial units above the mean; a 
significant difference was found between baseline and 
amputation [Z=-5.178, p<.001].  
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 1 – Behavior rates for Non, Low and High Exhibitors  

 
As to other behavioral categories, High Exhibitors 
showed significantly more head and vocal units  [Z=-
4.908, p<.001], whereas Non- and Low Exhibitors used 
significantly less gaze and lip movements during the 
amputation than during baseline clip.  

 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 2 – Examples of individual styles 

 
Finally, we tested whether this variability in the use of 
non verbal behavior could be explained by individual 
regulatory styles. No significant correlations emerged 
with respect to standard questionnaires such as the 
ERQ and COPE; however, Non-, Low- and High 
Exhibitors significantly differed with respect to their 
Level of Distancing (F2,161=4.674, p<.05).  
In conclusion, our results showed: 1) a different use of 
multimodal categories (e.g. upper and lower face are 
the mostly used categories); 2) high inter-individual 
variability in the exhibition of facial behavior; 3)  
behavioral “freezing” rather than expression for certain 
individual styles (Non-Exhibitors); 4) the correlation 
with contextualized dispositional measures. 
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Learning constraints and guiding mechanisms are
involved since the very beginning of the infant de-
velopment. Allowing a progressive and open-ended
sca↵olding of new skills, these mechanisms have been
described as crucial, by psychologists and neurosci-
entists. Developmental heuristics presented here are
directly inspired by the ability to control the growth
of complexity of both exploration and learning in hu-
man children. More precisely, we focus on intrin-
sic motivations guiding mechanisms, responsible of
spontaneous exploration, and on maturational evolu-
tion of the neural and muscular systems, that pro-
gressively allow the organism to control novel mus-
cles, and thus, to increase its number of degrees of
freedom (Lungarella and Berthouze, 2002). There-
fore, we present a system using both self-motivation,
and neuro-physiological maturation in an integrated
computational mechanism, that aim to guide a robot,
to gradually explore and learn its sensorimotor space.

1. Competence Based Intrinsic Moti-
vation System

Previous work, presented in (Oudeyer et al., 2007),
(Baranes and Oudeyer, 2009) introduced IAC
and R-IAC as two knowledge-based
(Oudeyer and Kaplan, 2008) computational models
of intrinsic motivation in which a robot was mo-
tivated to explore sensorimotor subspaces where
its predictions of the consequences of its actions
increased maximally fast. These algorithms were
shown to allow for self-organized developmental tra-
jectories (Oudeyer et al., 2007) as well as e�cient
active learning of sensorimotor forward models.
(Oudeyer and Kaplan, 2008) introduced the compe-
tence based intrinsic motivation framework, in which
measures of interest are related to properties of the
achievement of self-determined goals rather than to
the properties of forward model predictions. In this
poster, we introduce a competence based version
of the R-IAC system (Baranes and Oudeyer, 2009).
This system is composed of a forward model (to be
learnt), a goal selection system which chooses goals
with a probability proportional to the expected

progress in their mastery, and a controller/planner
which allows the robot to reach a selected goal
reusing the forward model. In analogy to R-IAC,
the space of potential goals, i.e. of sensorimotor
configurations to be reached, is split into subregions
in each of which the mastery progress is monitored.
Hence, the mastery progress, defined as the deriva-
tive of the evolution of errors in reaching goals in a
particular subregion, is used as the measure of in-
terestingness of given goals. Thanks to this measure
of mastery progress, this algorithm allows the robot
to explore and attempt goals of gradually increasing
complexity. Additionally, we couple this mechanism
with physiological maturation constraints as we will
now explain.

2. Physiological Constraints

Over the first years, the physiological development
of infants represents a very important constraint for
the exploration and learning process. An important
aspect of the maturation of the neural system is the
myelinization process, which leads to the extensive
development of the corticospinal tract. This internal
constraint allows a gradual development of the in-
fants ability to control the distal musculature, from
the trunk to hands (proximo-distal vector), and from
the center of the body outwards (cephalo-caudal vec-
tor) (Kuipers, 1981). For instance, in the reaching
task, the fact that young infants predominately use
the musculature of the proximal arm and trunk, sym-
plify the learning problem by reducing the functional
degrees-of-freedom of the arm. In this poster, we pro-
pose to introduce such maturational constraints, pro-
gressively unfreezing the robot degrees of freedom,
and their interaction with the intrinsic motivation
system, described previously.

3. First Experiments

3.1 Competence Based Curiosity

Considering a robot controlled in a configuration
space C, and evolving in an operational space O,
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monitoring the mastery of reaching goals can be
treated at di↵erent level. Firstly, the macro-level

considers the mastery to reach a precise goal state:
in the case of an arm control task, a goal state can
be described as a vector of precise value, in the op-
erational space O (for instance, the position of the
arm extremity). Secondly, the mastery study can
be performed at a micro-level, which is defined as
the competence to perform micro-movements toward
a precise goal in O, from states in the operational
space. Therefore, in the macro-level vision, we
are able to monitor the competence level, to pre-
cisely reach a goal, and, in the micro-level, we are
able to monitor the competence level, to perform mi-
cro/primitives actions.

In the first serie of experiment presented here, we
analyse the behavior of the micro-level approach,
while the full version of the poster will introduce the
macro-level.

3.2 Proximo-Distal Evolution

The proximo-distal and cephalo-caudal maturation
of humans can be described as the release of each
controllable joint, following a sequence which de-
pends on its morphology. This sequence can be im-
plemented as a graph, whose each node represents
an available joint, and each link is assigned with a
weight representing a needed maturational level, to
evolve to the next joint. Here, the needed matura-
tional level is described as depending on two notions:
(1) The maturational needed age, which has to be
handcrafted, as a genetically coded value, it could
be fixed proportionnaly to the number of learning
experiments. (2) The global competence level, which
depends on the global competence progress, allowing
the passage to the next joint only if it is stabilized.

3.3 Experiment

The following experiment involved a simulated single
eye, with pan/tilt rotations capabilities controled by
joints velocities (q̇11, q̇12) 2 C, and a 2-joints arm,
controled by (q̇21, q̇22) 2 C, possessing a visible ex-
tremity (simulating a hand). The couple (x, y) 2 O
represents the hand position in the eye referential,
and v 2 O, a Boolean value meaning the presence
of the hand, in the camera sight. The global sys-
tem replies to the mapping (q, q̇)t 7! (v, x, y)t+1

with q = (q11, q12, q13, q14) and q̇ = (q̇11, q̇12, q̇13, q̇14).
By choosing goal values (v, x, y) 2 O and trying
to reach it, the system is able to learn the forward
model (q, q̇)t 7! �(v, x, y)t+1 (where �(v, x, y)t+1 =
(v, x, y)t+1 � (v, x, y)t), and motor skills (policies)
⇡(v, x, y, q) = q̇ of di↵erent complexities. In the stud-
ied configuration, we can point di↵erent kind of skill
complexity, like the ones where the hand is not in the
sight of the camera ((v, x, y) = 0), which can be con-

sidered as easy space subregions, or the ones where it
is, which contains more skills to learn. The proposed
experiment consists of observing the learning behav-
ior of three approaches of goal selection (v, x, y) 2 O.
The first one, which represents a uniform selection
inside the whole space, is called Random. The sec-
ond approach, called RIAC Competence represents
the implementation of the Competence Based Intrin-
sic Motivation heuristic (without physiological con-
straints). Finally, the Proximo-Distal Competence
Based Curiosity (PDCC) heuristic (using physiolog-
ical constraints) is evaluated considering two stages,
the system beginning by just moving its camera (val-
ues (q̇11, q̇12)), and freeing its arm (values (q̇21, q̇22))
on the second stage.

Figure 1: Histograms of Hand-Eye distances

The previous figure shows that RIAC Competence-
based guides the eye to focus on the hand, more than
the random guiding approach, and that the PDCC
approach guides it toward the hand more than the
two others. This allows us to argue that using both
physiological constraint and competence based ap-
proaches can guide the system to avoid a too im-
portant focalization on too simple areas and guide it
toward skills of intermediate or high complexity.
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Abstract 
 

It is proposed that the value (or motivational) 
system of an agent provides the drive for the 
development of behavioural competences, but 
also imposes constraints on this process. This 
study provides an example of these proposed 
opposing effects in the context of a novel 
developmental Memory-Based Cognitive 
Framework: whilst a value system is necessary, 
its precise implementation may impose 
limitations on the acquisition of behavioural 
competencies through environmental interaction. 

 
1. Introduction 
 
Deriving principles from biology in the implementation 
of behaviourally flexible and autonomous robotic 
agents is now a well accepted methodology (Guillot 
and Meyer, 2001). Of particular importance for the 
present work is the principle of developmental learning 
(Weng, McClelland et al., 2001), and that cognition 
may be described as being fundamentally concerned 
with the manipulation and utilisation of memory (e.g. 
(Fuster, 1997)). Although autonomy has been proposed 
to result from self-sustaining processes, this is not 
currently possible in artificial agents, necessitating an 
emotion/value system to bridge the gap (Ziemke, 
2008). This value system is proposed to supply the 
most basic drives of the agent (Franklin and 
Ramamurthy, 2006), which enables the functionally 
evaluative mechanism necessary to distinguish that 
which is beneficial for the agent from that which is 
harmful. 

A number of types of value system have been 
proposed, e.g. homeostatic systems (Di Paolo and 
Iizuka, 2008) and intrinsic motivation (Oudeyer and 
Kaplan, 2007), but all emphasise this system as a driver 
of behaviour, without necessarily considering how such 
functionality constrains development. In this study, two 
types of value system are implemented in the 
framework of a novel cognitive architecture, with the 
particular aim of assessing how these influence the 
development of behaviour of a simple robotic agent. 

2. MBCF/EMA and Value Systems 
 
The Memory-Based Cognitive Framework (MBCF), 
and its corresponding computational architecture, the 
Embodied MBCF Agent (EMA), have been constructed 
based upon the previously described principles. In this 
context, memory is held to be associative, and is 
represented in the EMA by discrete objects (unlike a 
fully connected artificial neural network), where each 
of these objects (named 'cognits') explicitly link two 
elements from a lower level (figure 1) retrospectively, 
and have an activation value. Figure 1 describes the 
arrangement of groups of such cognits, where the 
arrows indicate the flow of activation over the course 
of one time step, and the action executed by the agent is 
simply the motor space element with the highest 
activation value. The manipulation of activation levels 
is thus important, since it is the totality of activation in 
the EMA layers which determines the executed action. 
It is proposed that the application of the term 
‘developmental’ to this system is justified, since it 
exhibits not only changes in behaviour over time (i.e. 
learning), but also creates the structure of 
representation and action (i.e. the creation of the cognit 
structure, which is the control structure) (Meeden and 
Blank, 2006). Further details of the MBCF and EMA 
may be found in (Baxter and Browne, 2009). 

 
Sensory

Associations
Motor

Associations
Sensory-Motor
Associations

SENSOR
SPACE

MOTOR
SPACE!Value'

System

Sensory
Input

Motor
Output  

Figure 1: The EMA structure used in the present work. The 
Value system acts as a scalar of sensory-motor association 
activation levels, thus influencing the behaviour of the 
system. 
 

The value system acts upon the activation levels of 
sensory-motor layer cognits. Each of these cognits has 
a 'value tag' (a float in the interval [0,1]) which acts a 
scalar for its activation level on every time-step. The 
assignment of this value tag is the subject of this paper. 
Two possible schemes are compared: (1) static, where 
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the assignment of an unchanging value tag is based on 
a manually designed transfer function; (2) dynamic, 
where the value tag is updated based on reinforcement 
learning principles. The former is thus only adaptive in 
terms of the number of cognits in the system, whereas 
in the latter case, both the number of cognits and the 
value tags thereof are adaptive. In addition to these 
schemes, a no-value system setup is implemented for 
comparison, where each of the value tags is initialised 
to 1.0, and remains at that value: i.e. there is no 
functional role for the value system. 
 
3. Experiment and Results 
 
For the present experiment, three versions of the EMA 
are implemented (the static, dynamic and no value 
system setups), and two benchmark controllers (a 
random walker, and a behaviour-based reactive obstacle 
avoidance controller). The aim for each of the agents 
was to learn the necessary sensory-motor coordination 
in order to move around freely in an open, bounded 
arena (i.e. obstacle avoidance). No cognits are present 
in the system at the start of each run. Figure 2 shows 
the results of this experiment. 
 

 
Figure 2: Concatenated vector mean length results (10 repeat 
runs, each of 5000 time-steps in a bounded open square 
environment) for five different setups: the development of 
behaviour of the static and dynamic value system setups is 
clear, whereas the no-value system EMA has a performance 
comparable to a random walker. (inset) derivation of the 
concatenated vectors: |Vc| >> |Vr|, even though the 
constituent vectors (each of which represents the movement 
of the agent over a single time-step) are the same length. 
 

There are two points which are of particular 
interest. The first is that the EMA requires a value 
system implementation in order for any meaningful 
behaviour to be acquired: the setup with no value 
system exhibits performance comparable with that of 
the random controller benchmark. The second point is 
the difference in final performance between the two 
value system setups. The advantage that the dynamic 
value system setup exhibits suggests that it is able to 
better adapt to the task and environment than the static 
value system setup (as might be expected). This result 
may alternatively be interpreted as a constraint on the 

development of behaviour: the particular instantiation 
of the static value system prevents a level of 
performance which could potentially be achieved by 
the EMA. Indeed, if the behaviour-based reactive 
obstacle avoidance controller is seen as the optimal 
behaviour in this environment given this task, then the 
dynamic value system setup is similarly constrained. 
Just as the definition of a fitness function is central to 
the success of an evolutionary robotics setup, this 
outcome indicates that the definition of a value system 
in a developmental robotic architecture requires similar 
attention. 
 
4. Conclusions 
 
These results have supported the proposed necessity of 
a value system in the progressive acquisition of 
behavioural competencies. Furthermore, the different 
performances of the two value system setups provides 
an indication of the limitations that value systems can 
impose. This suggests that the constraining effects on 
development of such a value system should, along with 
the motivational drives it provides, also be considered. 
 
References 
 
Baxter, P. and W. Browne (2009). Memory-Based Cognitive 

Framework: a Low-Level Association Approach to 
Cognitive Architectures. European Conference on 
Artificial Life (ECAL'09). Budapest, Hungary. 

Di Paolo, E. and H. Iizuka (2008). "How (not) to model 
autonomous behaviour." BioSystems 91(2): 409-423. 

Franklin, S. and U. Ramamurthy (2006). Motivations, values 
and emotions: three sides of the same coin. 6th 
International Workshop on Epigenetic Robotics. Paris, 
France, Lund University Cognitive Studies. 128. 

Fuster, J. M. (1997). "Network Memory." Trends in 
Neuroscience 20(10): 451-459. 

Guillot, A. and J.-A. Meyer (2001). "The Animat contribution 
to Cognitive Systems Research." Journal of Cognitive 
Systems Research 2: 157-165. 

Meeden, L. A. and D. S. Blank (2006). "Introduction to 
Developmental Robotics." Connection Science 18(2): 93-
96. 

Oudeyer, P.-Y. and F. Kaplan (2007). "What is Intrinsic 
Motivation? A Typology of Computational Approaches." 
Frontiers in Neurorobotics 1(6). 

Weng, J., J. McClelland, et al. (2001). "Autonomous mental 
development by robots and animals." Science 291: 599-
600. 

Ziemke, T. (2008). "On the role of emotion in biological and 
robotic autonomy." BioSystems 91(2): 401-408. 

196



Gesture recognition as a prerequisite of imitation

learning in human-humanoid experiments

Florian A. Bertsch and Verena V. Hafner
Cognitive Robotics Group

Department of Computer Science
Humboldt-University Berlin, Germany

{bertsch,hafner}@informatik.hu-berlin.de

Abstract

Behavior recognition is one of the skills nec-
essary for imitation learning. We present an
approach that shows that real-time learning
of visually observed dynamic gestures is pos-
sible, and outline how it could be used for
imitation learning experiments.

1. Introduction

Imitation learning is an important but di�cult skill
that develops in early infancy. The prerequisite for
imitation, which goes beyond a reflex-like behavior,
is the recognition of the behavior of another person,
being also one of the main prerequisites for commu-
nication. Gesturing is a good example of a behavior
that is relatively simple but contains a large amount
of information.

Robotic experiments on imitation learning (see
(Dautenhahn and Nehaniv, 2002) for a review) have
focused on di↵erent aspects of imitation learn-
ing. (Saunders et al., 2007) focus on self-imitation
as a first step towards the imitation of others,
since it can be learned using one’s own sen-
sorimotor feedback in a self-supervised manner.
(Hafner and Kaplan, 2005) studied the development
of body maps and interpersonal maps as a method
for the recognition of body space and (interaction)
behavior. Imitation is important for interpersonal in-
teraction, learning and the ability of behavior recog-
nition, and it is an important prerequisite for social
interaction (Meltzo↵ and Gopnick, 1993).

In our approach, we presented a method for learn-
ing and recognizing visually observed dynamic ges-
tures of humans. The method is applied on the hu-
manoid robot Nao and tested in a real-time human-
robot interaction experiment. We outline how this
experimental setup and method can be used for nat-
ural and intuitive human-robot interaction and for
the study of imitation learning and aspects of it such
as the body correspondence problem.

2. Gesture Recognition

Choice of gestures and data acquisition

To ensure that our method can be calculated in real-
time, we focuse on gestures that can be described by
the hand movements of a human within the image
plane. This condition restricts the set of gestures
we may use to such cases where the gesticulating
person uses “large-scale” movements of the hands.
While people typically use mimic and finger gestures
during a conversation, they use “large-scale” move-
ments when they gesticulate over large spatial dis-
tances. Therefore, we chose eight sample gestures
out of a set of gestures used by construction workers
to instruct vehicle drivers (see Fig. 1). We captured
a set covering these gesture types, which contained
212 single gestures performed by 9 di↵erent persons
(see Fig. 2).

Figure 1: Set of sample gestures

The segmentation of the video stream into seg-
ments that correspond to single gestures is done au-
tomatically in a way that can be used in online ex-
periments as well. Therefore, a resting posture (both
arms are hanging down beside the torso) is recog-
nized and each movement between leaving and re-
turning to the resting posture is assumed as a ges-
ture.

Recognizing a fixed gesture set

In a feature extraction step we localized and tracked
the face and hands of the gesticulating persons.
The extraction methods are based on a Viola-Jones-
Detector and an adaptive color model. Based on
these features we compared linear discriminant anal-
ysis (LDA), support vector machines (SVM) and
hidden Markov models (HMM) for the recognition
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task using cross-validation in a “leave-one-person-
out” manner. As result we obtained a similar recog-
nition rate for the di↵erent approaches of approx.
0.9 (in comparison to 1/8 for a random guess). We
observed that the result mainly depends on the way
the features are preprocessed. Following these find-
ings, we propose an approach which relies on a simple
recognition method based on histograms and avoids
complex and costly methods.

Figure 2: Sample pictures from the video capturing of 9

persons performing 212 gestures of 8 di↵erent types.

Learning unknown gestures

In addition to the approach described in the last sec-
tion, we developed a method to learn unknown ges-
tures by observation that can be applied to a human-
humanoid interaction scenario. When presenting a
sequence of gestures unknown to the humanoid, it
can learn new gesture types by grouping similar ges-
tures together. This approach aims at developing
methods that enable a humanoid to learn new be-
haviors by observing a human who not necessarily
pays attention to the humanoid. To construct an
appropriate method for this approach, we performed
a comparative analysis of di↵erent feature represen-
tations and clustering methods. As result we ob-
tained an online clustering method that is based on
a specific distance measurement between observed
gestures. Therefore the movement of each hand is
decomposed into directed line segments and the dis-
tance of two gestures is defined as the sum of the
smallest distances between the pair-wise most similar
line segments. To evaluate this approach we applied
it to gesture sequences which were generated by ran-
domly choosing 5 gestures of each gesture type. As
result we obtained an average adjusted Rand index
of 0.7, a value indicating a successful grouping of the
real gesture types.

3. Interaction game

To show the possibilities of the described approaches
when used as basis for human-humanoid interaction
and imitation, we arranged a gesture-based inter-
action game between a human and the humanoid
robot Nao (see Fig. 3). The game consisted of al-
ternating gesture recognition and presentation tasks
for both participants to demonstrate the humanoid’s
gesture recognition skills as well as its ability to use
its human-like shape to perform gestures by itself.

This experiment uses a fixed predefined gesture set
which is recognized using the method describe in sec-
tion 2. and performed by the robot using a predefined
movement pattern. The interaction game can be con-
sidered as an attempt to organize a setting which
is convenient for future advanced imitation experi-
ments based on visual gesture recognition and learn-
ing skills.

Figure 3: An interaction game demonstrates a gesture-

based mutual human-humanoid interaction with a Nao.

4. Future imitation experiments

The presented approach of learning by observation
allows learning to recognize unknown gestures with-
out an explicit training session. It would be desirable
to extend this skill in a way that the humanoid is not
only able to recognize the new gestures but also to
perform them itself. This would be a typical human-
robot imitation task which seems to be easily achiev-
able when using the gestures we focused on. It seems
to be promising to set up a relation between the ob-
served hand positions and the humanoid’s posture
which should lead to the ability to repeat observed
gestures in the desired manner.

References

Dautenhahn, K. and Nehaniv, C. (2002). Imita-
tion in animals and artifacts. MIT Press, Cam-
bridge, MA.

Hafner, V. and Kaplan, F. (2005). Interpersonal
maps and the body correspondence problem. In
Demiris, Y., Dautenhahn, K., and Nehaniv, C.,
(Eds.), Proceedings of the Third International
Symposium on Imitation in animals and arti-
facts, pages 48–53, Hertfordshire, UK.

Meltzo↵, A. and Gopnick, A. (1993). The role of
imitation in understanding persons and devel-
oping a theory of mind. In S. Baron-Cohen, H.
T.-F. and D.Cohen, (Eds.), Understanding other
minds, pages 335–366. Oxford University Press.

Saunders, J., Nehaniv, C. L., Dautenhahn, K., and
Alissandrakis, A. (2007). Self-imitation and en-
vironmental sca↵olding for robot teaching. In-
ternational Journal of Advanced Robotics Sys-
tems, Special Issue on Human - Robot Interac-
tion, 4:109–124.

198



Designing a Turn-taking Mechanism as a Balance

Between Familiarity and Novelty
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Abstract

Novelty is a main source of exploration and
learning. However, an ever-changing environ-
ment may hinder the anticipation of an action
effect and lead to emergent behaviors that
are detrimental to learning. In this paper we
present a model where the exploration of the
physical or social environment is related to
a balance between seeking novelty and famil-
iarity. From this emerge turn-taking in a so-
cial environment, with correlated benefits of
learning and communication.

Exploration and familiarity Familiarity plays
an important role to redirect attention toward ex-
ploration. It provides the ingredients to stabi-
lize the relationship between the environment and
the agent’s behavior. But researching for nov-
elty is also very important in order to learn
(Oudeyer and Kaplan, 2004).

Within this perspective, an autonomous robot
needs both to handle familiar elements and to find
novelty in its environment. Applying this principle
in (Blanchard and Cañamero, 2006) made the robot
oscillate between phases of exploration and phases of
familiarization. The principle is to inhibit the motor
command as a function of the perceived novelty. If
we plot the successive values of executed movements
and perceived novelty on two orthogonal axes, we
find graphs following the structure shown in Fig. 1.

Figure 1: Perception and
motor command of an agent

on two orthogonal axes, we

observe a cyclic dynamic.

Figure 2: Oscillator gen-

erated by the modulation
of movements from external

and internal inhibition.

However this interesting behavior can become un-
stable if the consequences of its own movement are

delayed or if the perception is temporary disabled.
Without perception of novelty, the motor command
would increase infinitely. In addition, even if the
level of novelty is constant, it can be useful to make
the motor command vary and repeat same actions
(Bolland and Emami, 2007). This allows the agent
to experience different effects of the same movements
in slightly different situations and to detect, via the
repeated search of causal links between perception
and action, whether the link was not due to random
co-occurrence of events. Therefore we add an inter-
nal inhibition of the motor command in order to limit
its amplitude but maintain minimal variations even
when the perception of the world does not change
(see Fig. 2).

New dynamic in a dyad We propose the above
model to explain how oscillations needed for turn-
taking (Prepin and Revel, 2007) are emerging. Al-
though mainly quoted in its learning function, imita-
tion is also a developmental means of communication
where children take turns by alternating the roles of
imitator and model (Nadel and Butterworth, 1999).
Model and imitator form a new dynamic system, an
evolving system of similarities built on the basis of
two different individual repertories from the inter-
action of which emerge new possibilities for both
agents.

As a demonstration of the principle, we have set
a simple virtual world implemented using “Pure
Data” (Puckette, 2009). An agent can generate a
movement M which makes its sensation S propor-
tionally change—typically this represents an agent
moving in the space where M is its velocity and
S its position. Due to the advantages of simplic-
ity, biological plausibility and stability of behavior
in limit cases (specially for continuity at starting
time), we reuse the detection of familiarity proposed
in (Blanchard and Cañamero, 2006) to build the ar-
chitecture presented in Fig 3.

We present the different kinds of exploration of
only one agent for different parameters of the archi-
tecture in Fig 4.

In Figure 5 we present the movements of the two
agents facing each other. We see that even if they
start at the same time they synchronize their move-
ment in anti-phase. This is the kind of behavior
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Figure 3: Implementation of one agent exploring a simple

world. One part is controlling the internal familiarity of

its motor command and another part is controlling the
external familiarity of the world.

0 200 400 600 800 1000

0
5

10
15

20

timesteps

se
ns

at
io

n

s = 1, γ = 1
s = 1, γ = 0.999
s = 1, γ = 0.99
s = 0.5, γ = 0.99
s = 2, γ = 0.99

Figure 4: Sensation of the agent as a function of time for

different values of sensitivity to novelty (s), and rate of

habituation (γ).

we expect for turn-taking (Prepin and Revel, 2007,
Revel and Andry, 2009).

Discussion We have proposed a new way to ap-
proach a difficult problem raised by the use of oscil-
lators to simulate the alternation of novelty and fa-
miliarity. Indeed this alternation is needed to achieve
an imitative turn-taking when the agent is in pres-
ence of a partner, but is also fruitful to achieve
an optimal learning when an agent alone explores
a physical environment (Bolland and Emami, 2007,
Oudeyer and Kaplan, 2004).

We were first inspired by an original design using
an attachment model where stability is a condition
for exploration(Blanchard and Cañamero, 2006).
After each novel stimulus leading to a novel motor
response, or each novel movement leading to a novel
perception via a novel stimulus, stability was taking
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Figure 5: In a face to face setup, the agents automatically

synchronize their movements in oppositions.

place.
We were guided to use oscillators as a way

to produce synchrony and turn-taking by the
collaborative work of Gaussier’s team and
Nadel’s team (Nadel and Butterworth, 1999,
Prepin and Revel, 2007, Revel and Andry, 2009).
We joined the two options in this study, using
oscillators to allow the emergence of turn-taking
during interactive imitation, and inspired by the
stability/novelty paradigm to synchronize behaviors.
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References
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How can a robot learn more and more complex
tasks? This question is becoming central in robotics.
In this work, we are interesting in understanding
how emotional interactions with a social partner
can bootstrap increasingly complex behaviors, which
is important both for robotics application and un-
derstanding development. In particular, we pro-
pose that social referencing, gathering information
through emotional interaction, fulfills this goal. So-
cial referencing, a developmental process incorporat-
ing the ability to recognize, understand, respond to
and alter behavior in response to the emotional ex-
pressions of a social partner, allows an infant, or a
robot, to seek information from another individual
and use that information to guide his behavior to-
ward an object or event(Klinnert et al., 1983).

Gathering information through emotional interac-
tion seems to be a fast and efficient way to trigger
learning. This is especially evident in early stages
of human cognitive development, but also evident
in other primates (Russell et al., 1997). Social refer-
encing ability might provide the infant, or a robot,
with valuable information concerning the environ-
ment and the outcome of its behavior, and is par-
ticularly useful since there is no need for verbal in-
teractions. In social referencing, a good object or
event is identified or signaled with an emotional mes-
sage. The emotional values can be provided by a va-
riety of modalities of emotional expressions, such as
facial expressions, sound (a scream), gestures, etc.
We choose to explore the facial expressions since
they are an excellent way to communicate impor-
tant information in ambiguous situations but also
because they can be learned autonoumously very
quickly (Boucenna et al., 2008). Our idea is that so-
cial referencing as well as facial expression recogni-
tion can emerge from a simple sensori-motor system.
All the work is based on the idea of the perception
ambiguity: the inability at first to differentiate its
own body from the body of others if their actions are
correlated with its own actions. This perception am-
biguity associated to a homeostatic system are suffi-
cient to trigger first facial expression recognition and
next learn to associate an emotional value to an arbi-
trary object. Without knowing that the other is an
agent, the robot is able to learn some complex tasks.
Hence we advocate the idea that the social referenc-

ing can be boostrapped from a simple sensori-motor
system not dedicated to social interactions.

Figure 1: The global architecture to recognize facial ex-

pressions and imitate. A visual processing allows to ex-

tract the local views sequentially. The internal state

prediction learns the association between the local views

and the robot’s internal state.

In our social referencing experiment, the set-up
is the following: a robot head learns to recognize
the facial expressions, an arm learns to reach an ob-
ject in the workspace and an other camera views the
workspace. Thanks to this set-up, the robot (head
plus arm) can interact with the environment (human
partner) and grasp objects. In the developed archi-
tecture, the robot learns to handle positive objects,
and learns to avoid the negative objects as a direct
consequence of emotional interactions with the social
partner.

The robot head learns to recognize emotional facial
expressions autonomously (Boucenna et al., 2008).
The robot produces facial expressions (sadness, joy,
anger, suprise and neutral face) and if the human
mimicks correctly the robot expression, the robot
learns to associate its proprioception (internal emo-
tional state) with the human’s facial expression. Af-
ter few minutes of online learning (typically less than
3 minutes) , the robot is able to recognize the human
facial expressions as well as to mimick them (fig. 1).

After a visuo-motor learning, several positions in
the workspace can be reached by the robot arm
(Andry et al., 2001). One visual position corre-
sponds to one or several motor configurations (e.g
attractors). These attractors pull the arm in an at-
traction basin (the position target). This control
is performed with a dynamical system in the aim
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of smoothing the trajectory (Fukuyori et al., 2008).
This dynamical system also uses a reinforcement sig-
nal in the aim of attaching a lot of or little impor-
tance to some attractors, for instance a reward can
be given if the arm follows the right direction, oth-
erwise a punition. The reinforcement signal can be
emotional (e.g happy facial expression is a positive
signal and an angry facial expression is a negative
signal).

As soon as the facial expression learning is per-
formed (i.e the human partner must imitate the
robot head between 2 and 3 min, then the robot is
able to recognize and display the human facial ex-
pressions), the human can interact with the robot
head to associate an emotional value to an object
(positive or negative). The neural network (N.N)
tries to correlate signals from the robot’s internal
state with external infomations (e.g facial expres-
sions or object attributes). The N.N does no distinc-
tion between the internal state and the facial expres-
sion recognized on the partner’s face. In the absence
of the internal state, the facial expression recognized
induces an internal state which is associated with the
object (a simple conditionning chain: figure 2).

Classical conditioning can perform this association
between the emotional value that the human trans-
mits and some areas of the image. The attentional
process used in this model is very simple, the robot
focuses on colored patches or textures. When focus-
ing on an object, the robot extracts some focus points
and associates the recognition of the local view sur-
rounding these focus points with the emotional value
of the robot. For instance, if the robot is in a neutral
emotional state and the human displays a happy fa-
cial expression in the presence of an object, the robot
will move to a joy state and will associate a positive
value to the object. On the contrary if the human
displays an anger facial expression, the value asso-
ciated to this object will be negative. As soon as
this learning is finished, the robot arm can handle or
avoid the objects according to their associated emo-
tional value. In other words, the emotional value
associated to the object is the reinforcing signal that
the arm uses so as to move (exactly as the human
facial expression or an internal reward). Besides,
the human partner can always provide an emotional
value on the robot’s behavior, there is a competition
between the object emotional value and the partner’s
facial expression. The competition is performed with
a simple WTA (Winner Take All). The robot could
handle negative objects if the human partner dis-
plays a joy facial expression or it could avert positive
objects if the human displays an anger facial expres-
sion (the object’s emotional value is not overwritten).

We think this approach can provide new interest-
ing insights about how humans can develop social

Figure 2: experimental set-up for the social referencing:

The robot arm reachs the positive object and averts the
negative object.

referencing capabilities from sensorimotor dynamics.
In contrast to current developmental theory consid-
ering that social referencing is a complex cognitive
process of triadic relations, the current work sug-
gests 1) the primacy of emotion in learning, 2) the
simple classical conditionning mechanisms by which
anothers emotional signal assumes identity with in-
ternal emotional states, and 3) a simple system of
pairing internal emotional state with object-directed
behavior.

Acknowledgments

The authors thank: J. Nadel, M. Simon and R. Soussignan

and P. Canet for the design and calibration of the robot head.

L. Canamero for the interesting discussions on emotion mod-

elling.This study is part of the European project ”FEELIX

Growing” IST-045169, the French Region Ile de France ”DIG-

ITEO”and the Institut Universitaire de France.

References

Andry, P., Gaussier, P., Moga, S., Banquet, J., and Nadel,

J. (2001). Learning and communication in imitation: An

autonomous robot perspective. IEEE transactions on
Systems, Man and Cybernetics, Part A, 31(5):431–444.

Boucenna, S., Gaussier, P., and Andry, P. (2008). What

should be taught first: the emotional expression or the

face? epirob.

Fukuyori, I., Nakamura, Y., Matsumoto, Y., and Ishiguro, H.

(2008). Flexible control mechanism for multi-dof robotic

arm based on biological fluctuation. From Animals to
Animats 10, 5040:22–31.

Klinnert, M., Campos, J., Sorce, J., Emde, R., and Svejda,

M. (1983). The development of the social referencing in

infancy. Emotion in early development, 2:57–86.

Russell, C., Bard, K., and Adamson, L. (1997). Social refer-

encing by young chimpanzees (pan troglodytes). journal
of comparative psychology, 111(2):185–193.

202



Should I worry about my stressed pregnant robot?
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1. Introduction

Since (Braitenberg, 1984), there has been a grow-
ing interest in the study of how to develop simple
neuro-controllers for robots. This field of work now
encompasses many di↵erent technical areas such as
spiking neural networks, neural network evolution
and neural network development (Floreano, 2005).
Recent work has developed the idea of chemical
signals having a role in the modulation of be-
haviours generated by artificial neural networks
(Cañamero et al., 2002). Neural networks have been
grown to produce 3D models of a known biologi-
cal nature (Adams et al., 2004) so the idea that a
genetic algorithm can produce a controller for a
robot is not unknown. (Federici and Downing, 2006)
demonstrated that including an embryonic devel-
opment stage to the evolution and production of
a robot controller increased the scalability of ge-
netic algorithms. (Roggen et al., 2007) also con-
clude that morphogenesis provides an e�cient mech-
anism for encoding the phenotype of an individual.
(Miorandi and Yamamoto, 2008) summarises the re-
search into bio-inspired systems, focusing mainly on
the production of architectures using the phylogeny
and ontology, and ignores epigenetic organization as
proposed by (Sipper et al., 1997).

(Jablonka and Lamb, 2006) describe the role of
epigenetic mechanisms which can have a long term
impact on the behaviour/phenotype of an organ-
ism. They describe the main mechanisms by which
the long term behaviour may occur such as gene
switching, DNA methylation, physical organization
and non-DNA mechanisms which can a↵ect the ex-
pression of genes and the subsequent phenotype.
(Tanev and Yuta, 2008) studied the impact that hi-
stones can have on gene expression and the adapt-
ability of an organism.

Biological studies (Clarke et al., 1996,
Laplante et al., 2008, Mastorci et al., 2009) show
that pre-natal stress factors can a↵ect the devel-
opment and behaviour of post-natal o↵spring. It
should be noted that the mechanisms by which
the behaviour is attenuated is not understood and
some results could be caused by embryo selec-
tion by the mother, rather than epigenetic e↵ects
(Ideta et al., 2009).

Recent work investigating the evolution of neural
networks shows that repeating patterns of connec-
tivity occur. In particular (Bowes et al., 2009) show
that symmetrical lateral inhibition of neurons im-
proved the ability of a robot to perform phototaxis
in a variety of light conditions. (Oros et al., 2009)
have also shown that bilateral symmetry improves
the evolvability of neural controllers. Both studies
include repeating patterns which may be coded us-
ing a GRN and developmental system as proposed
by (Roggen et al., 2007).

2. Proposal

The overarching aim of this research is to produce
and analyse mechanisms for creating robot con-
trollers incorporating simulated neurons which have
been produced using a GRN. The spiking neurons
being a↵ected by simulated chemicals which atten-
uate the simulated post synaptic membrane. This
system is analogous to biological development where
neural tissue is created in a pre-natal phase and the
post-natal individual is responsible for providing a
suitable environment for the development of the pre-
natal individual. We will therefore study the rela-
tionship between simulated pre-natal development
and simulated post-natal ’life’

The aim of this aspect of the research is to study
mechanisms where the post-natal experience can af-
fect the analogy of pre-natal development. This will
require the creation of a post-natal robotic ’organ-
ism’ which can survive in the equivalent of a ’hos-
tile’ environment, with desires for di↵erent resource.
Having such an analogous ’organism’ in the form of a
robot, we intend determining a possible artificial ge-
netic mechanism which would grow an appropriate
neural network (Roggen et al., 2007). This regula-
tory genetic mechanism would be adapted to take
into account the simulated chemicals from the post-
natal environment and thus di↵erent instantiations
of the robot would be produced depending on the
environment available during the initial ’pre-natal’
development.

The external environment that the robot will ex-
perience will consist of a light gradient which coin-
cides with temperature and ’available food’ in the
form of simulated glucose. The robot will also have
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an internal environment to represent the chemicals
produced by the GRN and other chemicals such as
glucose absorbed from the environment and waste
products from metabolism.

The performance of the robots will be measured
in terms of their ability to maintain a homiostatic
stable environment in a range of environmental con-
ditions which will be created by having varying light
gradients in the robots living environment. A con-
trol group of robots will be used which do not have
epigenetic mechanisms which we suggest will be able
to cope when the environment does not fluctuate fre-
quently. The epigenetic robots which experience en-
vironmental stress may produce o↵spring which are
better adapted to the environment that the parent
has just experienced. Hopefully, we should not be
worried when the parent robot is stressed.
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Introduction. Gaze reading is an essential part
of HRI as it supports, among others, joint attention
and non-linguistic interaction. While most work has
focused on implementing gaze direction reading on a
robot, little is known about how a human partner is
able to read gaze direction from a robotic face.

Cognitive psychology shows how gaze direc-
tion reading is essential in joint visual attention
(Langton et al., 2000) or how gaze avoidance is used
in social communication (McCarthy et al., 2006).

This suggests that it is not only important to
have machines that can read gaze direction, but that
robots should be able to accurately display gazing be-
haviour that can be correctly interpreted by human
users. We questioned the influence of the physiog-
nomy of an agent’s face and eyes on the user’s abil-
ity to infer where it is looking. Thus, we performed
a series of experiments in which human participants
were asked to infer the gaze direction of four di↵er-
ent types of faces as seen on fig 1 from two di↵erent
viewpoints.

Figure 1: The 4 display-faces used in the experiment.

A real human face served as the null-hypothesis.
We assume that a real human face works best for
assessing gaze direction. Next to this, we evaluate
three artificial faces. The first one is a recording of
the human face displayed on a monitor; this condi-
tion serves to assess in how far the lack of 3D struc-
ture influences gaze reading. The second is a robotic
face implemented as a back-projected 3D face; this
is a new technology currently being explored in HRI
(Delaunay et al., 2009) which is cheaper and more

flexible than existing facial animation technologies.
The third is the same robotic face, this time pro-
jected into a semisphere; this serves to evaluate the
technology of (Hashimoto and Kondo, 2007), who
evaluated a similar robotic setup.

Methods and Results. In this process, we con-
sidered two points: as several contributions about
3D avatars displayed on flat screens have been pub-
lished (Picot et al., 2007) we focus on the e↵ect of
flat screens on human gaze-guidance; and given that
adult face proportions don’t fit the dome and mask
displays, these combinations would probably lead to
the uncanny valley e↵ect because of a squeezed face.

The viewpoint e↵ect was explored by placing the
participants either directly in front of the display-
face (0 degrees condition), or at an angle of 45 de-
grees on the right (45 degrees condition). Twenty
four participants participated in a sequence of four
sessions. This yielded 96 records, which gives 12
records for each condition. To account for any ha-
bituation e↵ect, i.e. performance increase of partici-
pants over the sessions of a sequence, we shu✏ed the
order of sessions for a pair of participants. This way
it was ensured that the number of times a display
face would be experienced 1st, 2nd, 3rd or 4th was
equal.

Between the participants and the display-face
there was a transparent grid of 50x50 cm, evenly di-
vided in 100 squares each displaying a number from
the sequence 0 to 99 from top left to bottom right
(center area of the grid are the numbers 44, 45, 54
and 55). The grid stands upright between the par-
ticipants and the evaluated face so that the distance
from eyes of the face to the numbers of the grid would
increase evenly from the center of the grid. The po-
sition and size of the grid also ensured eyelids could
not hinder the interpretation of gaze direction when
gazing at the bottom of the grid (number 70 to 99).

A single session consisted of the display-face look-
ing at a sequence of 50 randomly generated numbers,
switching to the next one after a fixed delay. As num-
bers are pseudo-randomly generated, we instructed
the participants that the same number can appear
multiple times in a number sequence; allegedly each
number would occur fairly over all sequences.

Once a number was gazed at, an auditory signal
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was played indicating to the participants that they
could perform their observation. A delay of 5 sec-
onds was long enough to give the (human) display-
face enough time to find the proper number and for
the participants to write down their observations af-
terward. When the display-face was a human (one
of the examiners), the number sequence was played
over earphones worn by the examiner so it could not
be heard by the participants. In the case of the video,
the display-face consisted of a prerecorded sequence
of the same examiner looking at a number sequence.
In the two cases of the animated faces, the number
sequence was generated on the fly and fed into the
animated face control module. The same auditory
signal was played once the display-face was looking
at the next number to ensure consistency among ses-
sions.

Distance between the participants’ written se-
quence of numbers and actual sequence was calcu-
lated as follows: horizontal and vertical errors were
counted separately, with each cell in either horizon-
tal or vertical direction counting as 1 while diagonal
errors were given a factor of 1.5.

A first confirmation of our expectations is that all
participants performed best at guessing human gaze
(the control) and also dramatically above chance for
all other faces.
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Figure 2: Mean errors per display from 2 angles.

When examining the di↵erence in performance be-
tween the two di↵erent viewpoints, it is clear that it
is much easier for participants to determine the gaze
direction when they are facing the face, as opposed to
a side view at 45 degrees (Figure ). This di↵erence
between viewpoints was significant for the human,
mask and dome, but not for the flat screen, due to
the large variance in performance.

Finally, participants were asked to subjectively
rate their experience (using a 7-point Likert scale)
in terms of e↵ectiveness. We asked them to describe
how e↵ective they found each of the four di↵erent
faces in conveying information about gaze direction.

Results indicate participants find the human to be
the most e↵ective in terms of gaze information, fol-
lowed by mask, flat-screen and dome. The di↵erence
between human and all other faces is significant, as
is the di↵erence between mask and dome, however it
is not between flat and mask nor flat and dome.

Discussion. As expected, inferring gaze direc-
tion from a real human is easiest and most accurate.
Overall though, it can be concluded that a 3D mask
with a projected animated face embodies a reason-
ably setup for which participants are still rather apt
at inferring the gaze direction. We hypothesize that
although an animated face is missing some human
characteristics, and hence this may impair the abil-
ity of participants to infer it’s gazing direction, the
3D structure of the mask counters this e↵ect. This is
reflected in the fact that performance for the dome
is significantly lower.

Comparing the mask and the flat-screen video,
participants perform more or less equally well (di↵er-
ence in performance is not significant). A flat-screen
video of a human face is also relatively well inter-
preted, although especially seen from the side the
variance in performance is rather large.
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Abstract

The aim of this study is showing that a sim-
ulated robot trained in a navigation task with
a genetic algorithm can develop an internal
model, and rely on it to fulfill the same task
adaptively even in (partial) absence of exter-
nal stimuli, or when the robot is temporar-
ily ‘blindfold’. We found that evolved inter-
nal models have dynamical and aticipatory as-
pects. In our experiments the key condition
is unreliability in sensory stimulation1.

1. Introduction

The idea that cognitive agents act on the basis of
internal models of their tasks instead than purely
on the basis of the stimuli they receive from the ex-
ternal environment can be considered foundational
in cognitive science.The structure and functioning of
internal models is however much more debated.

Recently, after years of little interest culminat-
ing with Rodney Brooks’ claim that “the world is
its own best model”, the idea of internal modeling
is gaining consensus anew, as numerous researchers
in cognitive psychology, neuroscience, and robotics
have (re)integrated the ideas of internal modeling
and representation in an ‘embodied’ view of cogni-
tion loosing their classical symbolic centered status
and, at the same time, emphasizing that anticipa-
tion is a key element of internal models’s function-
ing (Grush, 2004; Wolpert et al., 1995). However, it
is less clear why and how did internal models origi-
nate. To tackle this problem, in this paper we adopt
an evolutionary robotics methodology (Nolfi and Flo-
reano, 2000), which permits to verify whether an in-
ternal model can evolve and eventually which are the
prerequisites for its evolution.

The primary goal of this paper is to investigate
whether artificial embodied agents, that are trained

1Research supported by the EU’s 7th FP, grant agreements

ITALK (ICT-214668) and HUMANOBS (ICT-231453).

for the ability to exhibit a given behavioral skill, de-
velop and use an internal model that allow them to
anticipate forthcoming stimuli to overcome the prob-
lems caused by the fact that sensory stimulation is in-
complete or noisy. The work described in this paper
represents one of the first attempts to demonstrate
this hypothesis experimentally (after the pioneering
study of Ziemke et al. 2005) and the first demonstra-
tion that an internal model can indeed arises spon-
taneously without being rewarded or incorporated
explicitly in the system.

2. Methods, scenario, and results

To test our hypothesis, we set up an experimental
scenario in which an embodied and situated agents
should develop an ability to display a simple behav-
iour and keep producing it also when the sensory
information is temporarily missing.

The agents consists of a simulated eye provided
with a single photoreceptor located in front of a
screen showing an 500x500 pixel image generated by
the combination of a blue and red gradient ranging
from 0 to 1 along the left-right and the top-down
dimensions, respectively. Each time step, the pho-
toreceptor detects the intensity of the blue and red in
the pixel corresponding to the current position of the
eye. The agent is also provided with two motors that
allow it to move left-right and/or top-down, with re-
spect to its current position, up to a maximum of ±
5 pixels along each axis.

The task of the agent is that to navigate on the
image by turning around the center of the image. For
the purpose of measuring agent’s ability to exhibit
such behaviour, the image has been ideally divided
into 36 sectors located around its centre.

The agent’s controller consists of an artificial
neural network (see fig. 1) with two sensory neurons,
eight internal neurons, two motor neurons, and two
additional output neurons that are used to set the
state of the sensory neurons when visual information
is missing. The two motor neurons (M1, M2) deter-
mine the amplitude of the eye movement along the
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Figure 1: The architecture of agents’ neural controller.

left-right and top-down dimension within a range of
[-5,5] pixels. Sensory inputs are simply rely units,
internal neurons are leaky integrators motor neurons
are standard logistic neurons activated.

The architecture of the neural network is fixed.
The connection weights and biases and the time con-
stant of the internal neurons are encoded in free pa-
rameters and evolved.

During the evolutionary process each individual is
tested for 20 trials. At the beginning of each trial
the eye is placed randomly in one of ten possible po-
sitions around the center of the image. The agent is
then allowed to interact with the environment up to
4000 time steps. For each trial the agent experiences
a succession of phases in which sensory information
is available (normal phases), and phases in which it
is missing (blind phase).

During all the normal phases, the state of the two
sensory neurons is set on the basis of the colour of the
current portion of the image perceived by the agent.
During all the blind phases, the state of the two sen-
sory neurons is set on the basis of the state of the
additional output neurons (O1 and O2) at time t-1.
The performance (fitness) of the individual has been
evaluated by computing the number of subsequent
sectors of the image visited by the eye.

By analysing the behaviour of evolved individu-
als we observed that in 17 out of 40 replications of
the experiment, the best individual succeed in cir-
cling around the centre of the image both in normal
and blind phases during which sensory stimulation
is temporary missing and in which the state of R
and B sensory neuron is replaced with the state of
the two additional motor neurons O1 and O2. These
individuals manage to compensate the lack of sen-
sory information by self-sustaining their internal dy-
namic in two different ways. Agents belonging to
the first ‘family’ (13 out of 17) solve the problem
by developing two qualitatively different strategies
for normal and blind phases, and trigger the first
or the second strategies during the two correspond-
ing phases. Interestingly, although almost all these
agents anticipate incoming stimuli during the nor-
mal phases with their neurons O1 and O2 (anticipa-
tion measured through a cross-correlation analysis),
their dynamics are different during the blind phases
(like in Ziemke et al., 2005). Agents belonging to

the second ‘family’ (4 out of 17), instead, keep react-
ing to the experienced sensory states in similar ways
during normal and blind phases and compensate the
lack of sensory information with the self-generation
of equivalent information and by anticipating how
the state of the sensors would vary as a result of the
execution of the planned action. That is, the agents
use a predictive strategy based on internal modeling.
Agents belonging to the second ‘family’ are, on aver-
age, more effective than agents belonging to the first
family.

3. Conclusions

The central hypothesis that motivated our design
methodology is that a (temporary) deprivation of ex-
ternal stimuli can make it favorable, from an evolu-
tionary perspective, the development of a robot’s in-
ternal model even in absence of any explicit reward
for prediction. Indeed, once the robot has learned
a reliable behavioral strategy and an associated dy-
namical representation of its task, it could be favor-
able to maintain the same strategy, and at the same
time learning to self-maintain the same dynamics via
self-generated (predicted) inputs, rather than evolv-
ing two separated strategies to deal with the pres-
ence or absence of external stimuli. Our experimen-
tal results show that, under opportune environmen-
tal conditions, a robot can spontaneously develop
an internal model that has anticipatory aspects, can
be (temporarily) detached from the current senso-
rimotor flow, and endogenously reactivated by self-
generated signals. This result supports the idea that
internal modeling capabilities could have arose for
these reasons, and not for cognition, although they
could have been successively exapted for increasingly
complex cognitive uses (Grush, 2004; Pezzulo and
Castelfranchi, 2007).
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Abstract

In this paper, we present an experimental
setup currently built at Humboldt-University
Berlin where various research questions aimed
at understanding the development of throw-
ing skills can be answered. Both EEG data
and the physical motion of the thrower are
measured and visual feedback is provided.

1. Introduction

Throwing1 is a di�cult skill that involves a pre-
cise interplay of sensory information and motor com-
mands. Throwing an object at a moving target in
particular requires an exact eye-muscle coordination,
as well as the coordination of shoulder, elbow, wrist
and finger muscles. Another di�culty is the precision
of the timing. The launch window for an accurate
throw is only 1 to 10 ms wide (Calvin, 1983).

Investigating into the underlying processes for the
development of throwing skills is both interesting
from an evolutionary and from a developmental point
of view. Throwing is possible by just using hand and
arm without any specialised tool. Other forms re-
lated to throwing that require tool-use are archery,
slingshot, or shooting. The earliest dedicated throw-
ing tools in human history can be dated back to the
paleolithic (Rhodes and Churchill, 2009). Many ani-
mal species show signs of throwing and other tool-use
(Westergaard et al., 2000).

During human infant development, throwing ap-
pears shortly after the skill of reaching and grasp-
ing at around the age of 12 months (Piaget, 1962).
A skilled hunter, however, can improve his learning
skills until the age of about 40 years. This shows
that aiming at a target requires much more than just
physical force, and a large amount of experience is

1
By “throwing”, we mean aiming at a target during the

throw, and not only launching an object. Even a long-throw

fulfils this prerequisite since the angle at the point of release

as well as the speed determine the point of collision of the

object with the target.

necessary for this coordinated sensory-motor inter-
action. Calvin even argues that the development of
throwing skills is a possible forerunner for the devel-
opment of speech (Calvin, 1993) because it fostered
the evolution of planning ahead.

We will present here a technical solution for an
experimental setup respecting the complex physio-
logical and sensorimotor prerequisites to study the
development of throwing skills. One of the ques-
tions to be answered is what can be learned by
pure self-supervised learning or learning by trial-and-
error, and what can be learned by observing a skilled
thrower (Demiris and Billard, 2006).

2. Experimental Setup

The experimental setup for the throwing experiments
is derived in close cooperation between the cognitive
robotics group and the cognitive psychophysiology
groups at Humboldt-University Berlin.

In order to extract the relevant information and to
provide the thrower with sensory feedback on his or
her throw, the following data have to be collected:

- EEG data synchronised with other information
- Motion trajectories and acceleration of the object

during the throw and other positions on the body
- Time of fixation of the target
- Time of starting the throw
- Time of releasing the object.
The following feedback and information need to

be provided to the thrower, either as tactile or visual
feedback:

- weight and size of the object
- size of and distance to the target
- trajectory of the flying object
- point of collision of the object
Simultaneously with the motion and feedback in-

formation, event-related brain processes supporting
the motor action and cognition will be studied by
means of EEG analysis. The EEG will be registered
from 64 active electrodes (actiCAPs), band-pass fil-
tered from DC to 100Hz and sampled at 1000Hz.
EEG dynamics may provide insights into the brain’s
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central role in optimising the outcome of complex be-
haviour (Makeig et al., 2009) such as object throw-
ing. By applying ICA, the EEG data can be sep-
arated into brain processes and non-brain artifacts
(e.g., movement-, electromyographic and eye-blinks
artifacts).

For the measurement of the motion, a sensor de-
rived from Nintendo’s WiiMote controller is used as
our prototype. This choice of sensor hardware has
several advantages. The WiiMote has a 3-axis ac-
celerometer, an infrared camera, several buttons as
well as vibrational and sound feedback. The data
can be read and sent via Bluetooth at a rate of ap-
prox. 100Hz using open source drivers. The feasibil-
ity of using the WiiMote as a tool for robotics experi-
ments has been shown in our previous research on be-
haviour recognition (Hafner and Bachmann, 2008).
Only recently (June 2009), an additional sensor (Wii
MotionPlus) was released that can be connected to
the WiiMote and measures the rotational accelera-
tion in three axes.

Figure 1: The sensor equipment for the experiments is

partly derived from a Nintendo WiiMote.

The subject throws a real object towards a target
that is presented on a projection screen, but as soon
as the object leaves the hand (measured by using
a WiiMote button release) it will be diverted and
simulated instead. The visual feedback derived from
the acceleration data of the throw is presented to the
thrower on screen in real time.

3. Research Questions

The following research questions will be addressed
using the presented experimental setup.

- Does the EEG activity reflect the brain’s control
of throwing, are there di↵erences between di↵erent
natural movements such as high-precision and low
precision throwing, complex movement sequences, or
simple movements (e.g. button presses)?

- How do phases of activity look like during pre-
movement, post-movement, and e↵ect monitoring?

- Are there di↵erences in brain activity for skilled
throwers and novices, men and women, long-distance
and short distance targets, light and heavy objects?

- Does the result of the previous throw influence

the performance of the current throw?
- Can the parameters be extracted and learned to

create a skilled robotic thrower?
- What are the di↵erences in self-supervised learn-

ing and learning from observation or demonstration
in a throwing task?

4. Future Work

The features and physiological properties of a skilled
thrower derived with the above setup can be tested in
a robotic setup with repeatable experiments and real
physics (in comparison to a simulation). Variable
parameters are temporal resolution, force, weight of
the object, and precision of the motors. In these ex-
periments, we would also like to investigate if the
throw can be based on experience about the sensori-
motor interplay or whether an internal simulation of
a physical model is required in the robot.
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Abstract

This poster presents early work on the ef-
fects of arousal and its regulation on learning
about the environment, particularly a�ective
memories associated with places that can be
used to safely guide exploration.

1. Introduction

As part of our ongoing research on the devel-
opment of attachment bonds between “baby” au-
tonomous robots and human caregivers, which
has previously investigated, among other aspects,
the role of the caregiver in arousal regulation
(Hiolle and Cañamero, 2008), this paper presents
the first steps of a longer-term study regarding the
e�ects of arousal and arousal regulation—one of
the key elements in the development of emotional
intelligence—on early learning of the environment.
In particular, arousal modulation is used to associate
simple a�ective experiences to the memory of scenes
and places. This is an important aspect of cognitive
development in infants, and in our case it permits the
robot to easily learn the relevance of novel scenes
and places—for example to be able to recall and
find places of interest in terms of learning—where
it was able to discover sensorimotor associations—
and places of “comfort”—associated to its human
caregiver. This is important to develop “safe” ex-
ploratory behavior alternating between locations of
interest and a “secure base”.

2. Architecture

The architecture depicted in Figure 1 permits the
robot recall and recognize several views of a scene
associated with one of the following events: (1) the
presence of the human caregiver; (2) a moderate level
of predictability in the perceptions of the robot; or
(3) a high level of unpredictability in its percep-
tions. The robot thus divides locations into three
categories: places where a human caretaker has inter-
acted (visually or using contact) with it, those where
it has found interesting and predictable features to

learn, and those where features where unpredictable.
This learning is mediated by the level of arousal of
the robot—a variable indicating the overall level of
internal activity: when the robot maintains a mod-
erate arousal level, it will stop and associate visible
landmarks with this state. Let us briefly consider
the di�erent elements of the architecture.
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Figure 1: Architecture for learning a�ective landmarks.

Arousal level. The level of arousal is here a func-
tion of the sensorimotor learning system. This learn-
ing system consists of a simple sensorimotor cou-
pling between the position of the joints and the cur-
rent feature of the image from the robot’s camera,
computed using the landmark extraction system de-
scribed below. This process is decoupled from the
landmark/state association one, i.e., it is stored in
another group of neurons. Its purpose is to assess the
stability and predictability of the location the robot
is at, and this information is fed onto the arousal sys-
tem. The prediction of the sensorimotor system—
where the robot “believes” to be—is compared to
the actual set of landmarks observed, and the per-
ceptual error provides input to calculate the arousal,
which varies as a function of the error. This means
that the arousal increases when the robot discovers
a new scene, and then decreases when the robot has
learned the correct association. These fluctuations of
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the arousal are then used to trigger the learning of
a scene or place. Interaction with the human care-
giver has a soothing e�ect on the level of arousal,
which decreases exponentially when s/he “comforts”
the robot either by touching a contact sensor or by
appearing in its visual field; that scene would thus
be learned as a “place of low arousal”.
Extraction of landmarks. To extract the land-
marks that the robot will in turn learn, we first ap-
ply a Sobel filter over the gray-scale image received
from the robot. The gradient image is then filtered
with a Di�erence of Gaussian kernel in order to ex-
tract low resolution focus points. Then, a log-polar
transform of a small size image centered on the focus
point is used to code for the landmark. This method
has been inspired by (Giovannangeli et al., 2006).
Landmark learning. For the robot to be able to
learn the landmarks, they are projected onto a layer
of neurons, the activities of which correspond to the
intensities of the pixels of the landmark. The land-
marks are then associated with the current state us-
ing a one-shot Hebbian rule modulated by the fluctu-
ations of the arousal as follows: wij = FAr · Iik · Sj ,
where wij is the weight between the state j and a
pixel k with intensity Iik, FAr is the absolute value
of the first derivative—fluctuation of the arousal—
and Si is the activity of the neuron representing the
state i. It is important to note that only one set of
landmarks can be associated with one state, giving
a one-slot memory per state to the robot.
State and Action Selection. The possible states
Si of the robot are either low arousal, medium
arousal or high arousal based on predefined thresh-
olds. A state of low arousal in a location can result
from the fact that the human caregiver was detected,
or that s/he touched the contact sensors of the robot,
or that the landmarks present are highly predictable,
indicating that the perceptual variability is very low.
If the arousal fluctuation is high, the robot will look
for stable landmarks by turning its head slowly, and
if the visual scene becomes stable enough, the land-
marks will be learned. In order to avoid blocking the
robot in a position where it will wait for stable land-
marks, the arousal fluctuation FAr decays at every
time step. Once the learning of the scene has been
achieved, the next state i is chosen by switching to
the next upper state in a circular manner (low ⇥
medium, medium ⇥ high, high ⇥ low). If a loca-
tion has been learned already for this state, the robot
will trigger a search behavior, until the recognition is
achieved. If no landmarks have been associated with
this state, the robot’s default behavior—exploring in
a random walk—starts.

3. Results and Discussion

We tested the architecture using a humanoid Nao
robot from Aldebaran Robotics. In a small un-

populated (apart from the experimenter) room, we
used 5 landmarks for each location, extracted from a
160�120–pixel image. The algorithm presented here
does permit the robot to move between locations of
known arousal outcomes. It functions adequately in
a simple setting where a human is alone with the
robot, where the robot will eventually discover, for
example, the location of a play mat and the loca-
tion of a human caregiver. Although the robot only
remembers one set of landmarks—one location—for
each state, this seems su⇥cient to model very early
stages of baby-caregiver interaction since, given that
the interventions and appearances of the human are
continually updated, the robot has a way to re-
trieve its “secure base” provided by the caregiver
(Bowlby, 1969). However, relying on stable land-
marks in the scene could cause problems for more
complex interactions and environments.

4. Future Work

This early architecture could be enhanced in a num-
ber of ways. For example, to improve the robustness
of landmark recognition, the robot could associate
the orientation of its head as additional information
for coding the landmark, and this would allow it
to choose the angle that provides the best accuracy
when perceiving the landmarks. We would also like
to add a learning system which allows the robot to
learn the action leading from one state to another,
avoiding the problem of “blind exploration” when
trying to retrieve a location. Finally, we would like to
extend the architecture to permit the robot di�eren-
tially associate landmarks with individual caregivers
as a function of their interaction history.
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Abstract
Based on the biological phenomenon of inhibi-

tion of return, we introduce an architecture de-
veloped for an active robotic vision system where
continually updated global information is used to
modulate the action selection process for saccadic
camera movements. This facilitates, in an ex-
tremely efficient way, the fundamental process of
avoiding re-saccading to objects previously vis-
ited and, thus, is considered to have a wide-
ranging application within active vision systems.

Inhibition of return (IOR) refers to the suppression
of stimuli (objects and events) processing where those
stimuli have previously (and recently) been the focus of
spatial attention (Lupianez et al., 2006). In this sense, it
forms the basis of attentional (and thus visual) bias to-
wards novel objects. Although the neural mechanism
underpinning IOR is not completely understood, it is
well established that the dorsal frontoparietal network,
including frontal eye fields (FEF) and superior parietal
cortex are the primary structures mediating its control
(Mayer et al., 2004). These are some of the many mod-
ulatory and affecting structures of the deep superior col-
liculus (optic tectum in non-mammals), the primary mo-
tor structure controlling saccade. Although visual in-
formation from the retina starts at the superficial su-
perior colliculus, and there are direct connections be-
tween the superficial and deep layers, the former can-
not elicit saccade directly (Stein and Meredith, 1991).
This information has to be subsequently processed by a
number of cortical and sub-cortical structures that place
it in context of 1) attentional bias within egocentric
saliency maps (posterior parietal cortex) (Gottlieb, 2007),
2) the aforementioned IOR inputs from other modali-
ties (Stein et al., 2002), 3) overriding voluntary saccades
(frontal eye fields) (Stein et al., 2002) and 4) basal gan-
glia action selection (McHaffie et al., 2005). Thus, bio-
logically there exists a highly developed, context specific
method for facilitating the most appropriate saccade as
a form of attention selection. All of the above saccade-
affecting attributes have valuable robotic application but
inhibition of return is potentially the most useful in the
earlier stages of constructing a saccade system that is
attention rather than visual-input driven. For example,

within the most basic of active vision system tasks where
static objects of the same shape and color are systemat-
ically saccaded to (i.e. brought to the centre of image),
there is a consistent need for a mechanism whereby ob-
jects already scanned are ignored (i.e. inhibition of re-
turn). The primary issue here is that similar image data
can emerge in very different image locations, thus the
only way of knowing whether an image feature has pre-
viously been saccaded to or not, is to store that informa-
tion at the global level. In the following we introduce
an architecture developed for a robotic active vision sys-
tem where that architecture enables the system to inte-
grate and update global information which can in turn
modulate the action selection process for saccadic camera
movements.

The active vision system consists of two cameras (both
provide RGB 1032x778 image data) mounted on a mo-
torised pan-tilt-verge unit. Three degrees of freedom
(DOF) are used: one verge movement for each camera
and one tilt which moves both cameras. Each motor is
controlled by determining its position in radians (rad)
where the state of the active vision system is fully de-
termined by the motor positions of the tilt, left and right
verge axis, (ptilt , pvL, pvR).

The overall computational architecture is illustrated in
Figure 1. It consists of three main parts implementing:
1) filtering image data, 2) action selection and execution
and 3) the operation of the visual memory. The latter is
the central feature of this architecture and main objective
of this paper. Without the visual memory, action selection
and the resulting saccadic eye movements are determined
solely by the current retina image data. Hence, similar
visual inputs (RGB image) lead to the same saccade, no
matter how often this specific saccade has been executed
before. With a visual memory in place, however, specific
motor positions (ptilt , pvL, pvR) resulting from a success-
ful saccadic camera movement can be stored. This infor-
mation can then be used to merge the camera image data
with the data representing the items present in the visual
memory (i.e. those previously saccaded to). The inhibi-
tion of return process can then be simply carried out by
subtracting the latter from the former, essentially trans-
forming the original camera input into a ‘retina-based
saliency map’ where, objects in the visual memory have
been inhibited leaving unsaccaded objects to compete for
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Figure 1: Architecture for embodied visual memory.

the next saccade. In the following the core function of
this architecture shall be described in more detail.

A visual buffer (local visual memory map or LVMM).
and the mapping for the saccadic eye movement (retina
based saliency map or RBSM) are the essential elements
necessary to create the so called overlaid saliency map
(OSM), see Figure 1. The OSM then feeds into an action
selection process: Basal Ganglia, (BG). The LVMM rep-
resents stimuli which have corresponding entries in the
visual memory. The creation of the LVMM is, thus, a
crucial part of the architecture. This process starts with
RBSM where, for each no-zero pixel in RBSM, the corre-
sponding ∆ values (∆ptilt , ∆pvL,∆pvR) are derived. These
∆ values are learnt beforehand through a mapping pro-
cess previously described (Lee et al., 2007). Hence, for
each non-zero pixel in RBSM we get the relative mo-
tor positions (∆ptilt ,∆pvL, ∆pvR) which drives the par-
ticular pixel into the image center. The result of this
step is stored as a list where each entry is written as:
(X ,Y,∆ptilt ,∆pvL,∆pvR). Notice, in Figure 1 an aster-
isk signifies a list. Adding these ∆-values to the cur-
rent absolute motor positions (ptilt , pvL, pvR) provided by
the active vision system delivers the final absolute motor
positions of the active vision system if a saccade move-
ment was executed. This is again represented as a list:
(X ,Y, ptilt , pvL, pvR). Thus, the ∆-values are replaced by
the final absolute motor positions. With this global infor-
mation the system can now easily ask if a specific pixel
(X ,Y ) in the current RBSM has a corresponding item in
the visual memory. If the derived absolute motor posi-
tions of pixel (X ,Y ) can be found in the visual memory

then this pixel is labelled with value of 1 otherwise it is la-
beled as 0. Thus, all list entries appear as: (X ,Y,{0,1}).
From this list we can then create the LVMM which has
the same dimensions as RBSM. Since LVMM contains
all previously saccaded to pixels (value 1.0), substraction
from RBSM results in the aforementioned ‘retina-based
saliency map’ and an accurate mapping of objects that
have not yet been saccaded to.

Although several computational models of inhi-
bition of return of have been put forward e.g.
(Alexandre, 2009), an actual robotic implementation of
such a process has, until now, not been fully described. In
this context, the system provides good real-time perfor-
mance and, thus, has the potential to be functional within
the most demanding of visuomotor paradigms.
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Abstract

We present a novel robot navigation system
based on distal place and value recognition.
The navigation control system is inspired by
the hippocampus - amygdala circuit that is in-
volved in place learning/recognition and stim-
ulus value association.

1. Introduction

A computational model of the hippocampus - amyg-
dala circuit was developed focusing on the ability
to recognize not only the current location where the
robot is but also surrounding locations that are cur-
rently visible to the robot. This distal location recog-
nition relies on the property that, in the absence
of occlusions, place defining stimulus configurations
change in a gradual manner as the robot moves from
one location to another. The difference between the
current sensory inputs and the templates associated
with known locations therefore increases gradually
as a function of distance to the perceived locations.
Distal recognition of value associated places allows
our system to navigate towards goals without explo-
ration of the intermediate space. Further more, nav-
igation behavior naturally becomes contingent upon
the stimulus state of the target location (stimulus
configuration changes when target light is ON or
OFF) providing our controller with added flexibility
for dealing with state changes in the environment.

This model was integrated into a robot control sys-
tem that was previously published in (1) without the
new hippocampus and amygdala implementations.

2. Distal place recognition & localiza-
tion

Figure 1 shows a diagram of the hippocampus model
for place recognition. The perceived stimulus config-
uration forms the sensory input that is matched to
heading direction specific templates (i.e. view cells
(2)). The activity of all view cells associated with
a particular location is summed in the distal recog-

Figure 1: Hippocampus network. Solid: excitatory con-

nections; Dashed lines: inhibitory connections

nition cells where the magnitude of activation in-
dicates the recognition confidence. Winner-takes-all
competition between the distal recognition cell out-
puts yields the current location estimate in the place
cells (3). Place cells and distal recognition cells are
associated with spatial locations by their connectiv-
ity to output grid cells (4) that use a population
code representation of spatial coordinates. By sub-
tracting the current location estimate from the distal
recognition cell associated location the output en-
codes the required displacement for reaching distally
recognized locations. In order to do this with a sin-
gle set of grid cells however it is necessary to process
the distal recognition cells sequentially.

3. Place value association

The amygdala provides association of values with
basic sensory stimuli (e.g. target lights) or stim-
ulus configurations encoded via hippocampal dis-
tal recognition cells. Whenever an innately reward-
ing/punishing input is received any stimulus (con-
figuration) that predicted the reward becomes asso-
ciated with the rewarding input. In order to trace
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which stimulus configuration (i.e. place) predicted
reward delivery we tag place cell activations with a
signal that gradually increases to a saturation level
as long as the place cell is active and gradually de-
creases when place cell activation is removed (see
figure 2). For basic stimuli tagging is triggered when
the perceived stimulus strongly changes (e.g. light
goes on or off). For further details, see (5).

4. Experiment

To test our rat brain inspired navigation system we
used a differentially rewarded plus-maze task (1).

First the robot explored the maze guided simply
by attraction to unmapped visible locations. When
the first reward location was encountered the cor-
responding place and sensory stimulus (target light)
were associated with the reward value. Subsequently,
exploration behavior was overruled by target light
approach behavior whenever the robot was able to
see target lights. Once all maze arms were visited
the robot recognized the valued locations and visited
them in order of learned reward magnitude.

The robot produced a sparse map of the environ-
ment with a majority of place cells in maze corner
areas where small movements dramatically changed
the visual inputs. Analysis of the visual pattern
templates (view cells) revealed that the values were
successfully associated with stimulus configurations
where the target object light is on even though each
maze arm end is also mapped to a visual configura-
tion where the light is off.

The robot successfully recognized not only its cur-
rent location in the maze but also produced gradu-
ally reducing recognitions for distal locations in the
current field of view (figure 3).

5. Conclusion

Distal recognition of value associated places pro-
duces flexible navigate without requiring full explo-
ration of the movement space. The resulting navi-
gation behavior is intrinsically contingent upon the
stimulus state of the target location enabling the con-
troller to cope with state changes in the environment.

Based on the combination of distal place recog-
nition and value association the hippocampus-
amygdala network successfully guided the robot to-
wards visible locations that were learned to be most
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Figure 3: Solid blue line: estimated movement by robot;

Dashed red line: actual movement; Red disk: estimate of

current location; Blue disks: place cell locations; Green

disks: activity of distal recognition cells (bigger = more

active); Magenta disks: values associated with place cells
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rewarding.
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Our long term goal is to design a control archi-
tecture allowing a robot to learn, as autonmously as
possible, complex behaviors. A human can achieve a
task using different strategies. For example, we can
follow a particular path or directly reach a particular
position. Both strategies allow to go to a place. This
raises a question on the human developpement :
how a child learns a task? What and how to order
different strategies? In robotics, a behavior can
be learned as a particular trajectory [Calinon and
Billard, 2006] or as the reaching of a target (position,
object, . . . ) [Girard et al., 2005]. Most of the time,
the learning of the trajectory is highly dependent of
the parameters defining the motor dynamics of the
robot or the effector(s). Timing, speed, and acceler-
ation matter. Conversely, if the robot has to reach
a particular target, then how the learning process
anchors this target in the sensory-motor space is
of high importance (and the choice of this space
also). Here, we present a model trying to merge
these two aspects (learning the timing of the tra-
jectory as a sequence of motor transitions [Andry,
2002] or as visuo-motor associations during the
moves of the robot). Our model is composed of
two sensori-motor loops allowing a robot to learn
the temporal and visuo-motor properties of self
behavior when guided and corrected by a human
experimenter (figure 1). The experiments raise the
question of synchronization and action selection
between the different responses of the sub-structures.

We have developed a controller for mobile robots
which is able to associate visual information (a
panorama of the environment) with self orientation
(using a compass representing the direction of the
actual movement). This controller is designed as
a sensori-motor loop based on a neurobiological
model testing some of the spatial properties of
the hippocampus. Interestingly, fewer researches
also highlight the temporal properties of the hip-
pocampal loop and the fact that populations of
cells can also learn the timing of the transitions
between input events. From these studies we have

Figure 1: Setup allowing a human to teach paths to a

mobile robot. The control architecture is designed learn

changes in the robot’s own motor dynamics (strong differ-

ences in the proprioceptive flow of the wheels). Thanks

to a leash, the human can pull on a sensing device, thus

guiding the robot. The robotic arms are not used in this

study.

designed a control architecture allowing a robot to
learn complex sequences (i.e. sequences containing
many occurrences of the same "unit") of sensori-
motor transitions [Lagarde et al., 2007]. Next, it
is important to distinguish how a "behavior" can
be learned: on one side the different steps can be
anchored in the environment. A coding linked to
the environment is obtained where each step, each
association is dependant of the environement (and
the recognition of this environment). On the other
side, this behavior can be learned independently of
the external environment, "blindly", for example by
anchoring the proprioceptive changes according to
an internal timeline. Of course, it is interesting to
notice that both solutions seem to complete each
other: figure 2 is a simplified schema of the global
architecture where both dynamics (temporal and
spatial) are learned by the same neural network
(NN) in two sensori-motor loops.
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Figure 2: Model of 2 sensori-motor loops (i) place-

movement associations learning and (ii) temporal com-

plex sequence learning.

With such a NN, we show that spatial and
temporal sensori-motor loops can be complemen-
tary. For example (figure 3), during a navigation
task, the robot learns the path as a succession of
temporal movements in addition to a collection of
spatial attractors. This learning proceeds in two
steps. First, the robot learns different independent
place-movement associations. Second, the robot is
kidnapped and put on a place. While the robot
follows the trajectory from the succession of place-
movement associations, the system learns the timing
of its own movements. The result is a robot able to
navigate autonomously reactively (spatial attractor)
and proactively (temporal prediction). We present
an experiment where an encoding can compensate
another one. Here, the temporal encoding com-
pensates the place-mouvements associations when
the vision is blocked. This raises questions on the
process of action selection. To continue our works
on the complementary of both sensori-motor loops,
we will study if the place-movement associations and
temporal sequences can be fused to strenghten each
other and deliver a coherent behavior. Futur work
aims at understanding how the different strategies
develop and cohabit during the human development.
How a robot can self evaluate to select one strategy
when the different loops proposes contradictory
movement?
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Abstract 

 
Human infants display a remarkable capacity to learn 
collaborative behavior from a single demonstration, 
and to use this knowledge to take either agent’s role in 
the collaborative behavior.  They are able to extract 
individual’s actions in terms of their object 
manipulation goals and attribute these to the 
appropriate agent, forming a “bird’s eye view” of the 
collaborative action.   
The current research exploits these concepts to allow 
the iCub humanoid to learn collaborative tasks via 
single observations of human demonstration.  The tasks 
involve two agents performing coordinated, 
collaborative sequences of simple object manipulations.  
Action perception is organized around physical 
properties of objects – their appearance and 
disappearance.  The robot has a pre-learned action 
repertoire that mirrors this perceptual capability for 
actions. During human demonstration our real-time 
action parser extracts the sequence of actions, including 
agent attribution.  The human and robot then agree on 
“who goes first” and the shared plan is used by the 
robot to collaborate, taking the appropriate role in the 
learned action plan.  We present results from 2 
experiments in which distinct collaborative behaviors 
are learned in real-time.  We argue that this approach 
provides a powerful compliment to existing 
programming by demonstration methods..  
 
 
 
1. Introduction 
 

Human children at 18-24 months display a 
remarkable ability to observe adults perform a 
collaborative task (with only 1 or two demonstrations) 
and then to engage themselves in that task, taking the 
role of either of the demonstrating adults (Warneken et 
al 2006a,b).  Tasks typically involve retrieval of a toy 
from a physical device which requires both agents to 
manipulate it in temporally organized and synchronized 
manner.  By definition, the goal-directed tasks require 
two agents to collaborate – as the physical constraints 
of the task are such that an individual agent cannot 
achieve the goal.  The behavioral data indicate that the 
children have understood the task in terms of a 
coordinated succession of actions, rather than a set of 
specific motor trajectories.  This research has identified 

three principal characteristics for collaboration (1) 
agents are mutually responsive and coordinated, (2) 
they have a common shared action plan for the joint 
enterprise.  (These provide a “birds eye view” of the 
collaboration and can be demonstrated by the agents’ 
ability to reverse roles.), and (3) a mutual commitment 
to the goal (Warneken et al 2006a,b). 

Based on these definitions, and standard 
collaboration scenarios, we have developed the “Get 
the toy” scenario, in which subjects must collaborate to 
achieve the goal. In this scenario, a two-handled box is 
covering the target object, a small toy.  In the 
demonstration, User 1 lifts the box using both hands, 
allowing User 2 to take the toy.  The robot should be 
able to observe the sequence of actions, form a shared 
plan (i.e. a plan in which actions are attributed to 
agents), and then use that plan to take either role in the 
collaborative action.  This provides a framework for 
more cognitive learning related to the notion that to be 
grasped an object must be visible and/or not physically 
covered/obstructed.  The observational learning 
capability shall extend to any scenario (of arbitrary 
length) consisting of actions that can be recognized and 
performed by the robot. 
. 
2.  System Overview 

System extends our previous work in the language-
action grounding framework (Dominey et al. 2005, 
2009). 

Construction of shared plans via observation: In the 
current research, shared plans are to be constructed 
based on the robot’s observation of two humans 
demonstrating the task to be learned.  At the onset of a 
new interaction, the supervisor indicates to the human 
by spoken language that it is ready to observe a new 
interaction.  Using the vision-based action recognition, 
the robot detects human generated action (extending 
Dominey & Boucher 2005).  Once a delay of >10 
seconds takes place with no further action, then the 
system determines that the collaborative interaction has 
been completed.  The shared plan is then committed to 
the Knowledge base. 

Engage in Learned Collaboration:  Once the plan has 
been created and committed to the knowledge base, the 
system is then ready to engage in the collaborative 
interaction.  The first step is to determine who goes 
first.  The system thus asks the user “Who goes first, 
you or me?”.  Based on the users reply, the system 
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attributes roles to itself and the human. 
The system then begins execution of the shared plan.  

For each action, the system recalls and states who does 
what.  When it is the agent, it performs its action.  
When the human is the agent, the robot monitors the 
human performance to determine whether the action 
was completed. 

Dialog management and spoken language processing 
(voice recognition, and synthesis) is provided by the 
CSLU Rapid Application Development (RAD) Toolkit 
(http://cslu.cse.ogi.edu/toolkit/). RAD provides a state-
based dialog system capability, in which the passage 
from one state to another occurs as a function of 
recognition of spoken words or phrases; or evaluation 
of Boolean expressions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Get the toy interaction.  (A) Larry (to the robot’s Left) 
takes the box, revealing the toy (B).  (C) Roboert (to robot’s Right) 
takes the toy. (D-E) Larry replaces the box, finishing the game.  (F) 
Now human and robot do the collaborative task. (G) Human takes the 
box and robot takes the toy.  (H) Role reversal – Robot takes the box, 
and human takes the toy. 

3. Experimental results 
In order to evaluate the implemented system, we 

performed a series of experiments in which two 
humans demonstrated a collaborative behavior to the 
robot, and then the robot performed the task with one 

of the humans.   
As illustrated in Figure 1, two users to the left (Larry) 

and right (Robert) demonstrated the task.  Larry lifts 
the box, revealing the toy.  Robert takes the toy, and 
finally Larry replaces the box. After a delay of ~10 
seconds with no action, the system determines that the 
interaction is finished, and requests verbal validation, 
which is confirmed. This results in a shared plan of the 
form: {larry take box, Robert take    
toy, larry put box}. 

The system then asks the user about who should go 
first.  Based on the response, the system identifies who 
was first in the shared plan, and replaces that person by 
“you” or “me” based on the user’s choice.  The shared 
plan is then ready for execution. In the current version 
the robot announces who does what before each action.  
This is optional.  When the robot is the agent it 
performs its action.  When the user is the agent the 
robot validates that the human has performed this 
action.  This validation can be done via vision, or via 
verbal confirmation from the user.  When the robot is 
the agent, it performs the required action using the 
capabilities defined in Table 1.   

We tested a collaborative behavior that has a different 
and more extended temporal sequence: Robert puts the 
box on the table, Larry takes the box.  Robert then 
places the toy on the table, and finally Laqrry covers it 
with the box.  We performed this demonstration and the 
robot correctly generated and used the corresponding 
plan, demonstrating a generalization capability. 
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Abstract 
 
This paper concerns emotion modeling for a task-
independent agent by integrating a module of needs. 
Inspired by theoretical views with regards to human 
needs, we suggest that appraisals can be confined 
within various scopes of needs, and to demonstrate this, 
we propose an emotion framework which allows 
control over appraisals via pre-defined levels of needs, 
urgency or priorities. 
 

1. Introduction 
 

In biological systems, motivations are concerned 
with internal needs related to survival (Canamero, 
1997) and psychological needs related to self-
sufficiency. Motivation varies as a function of 
deprivation in a form of varying internal states, and the 
latter are postulated to explain the variability of 
behavioral responses (Canamero, 1997). But what is 
the relation between motivations and emotions? 
Thomkins (Tomkins, 1984) views emotions as the 
primary motivating mechanism. According to him, the 
affect system adds strength to drives as motives -
“without its amplification, nothing else matters, and 
with its amplification, anything else can matter. It thus 
combines urgency and generality” (p.164). In another 
similar view, Zimmerman pointed out that the 
deficiencies of the various levels of need are actually 
experienced emotionally on a conscious level, but the 
individual may be unconscious regarding the level of 
need he or she is deficient of. In his words 
(Zimmerman, 2002)(p.3), "The deficiency in safety 
needs is experienced as fear by many people. When 
safety needs are met, fear disappears”. As Maslow 
[(Maslow, 1999)] has pointed out, when a need is 
satisfied, a new ‘higher’ need emerges. In this case we 
might see the ‘love needs’ arise in which one needs to 
be courageous. In this sense, fear is replaced by 
courage". Thus, he coined the word "need-emotions" to 
relate need deficiencies as experiential emotions.   

These theories served as inspiration to incorporate 
a need module in our affect model for a domain-
independent multi-tasking agent. To demonstrate this, 
we propose an emotion framework which allows 
control over appraisals via pre-defined levels of needs, 
urgency or priorities. In other words, appraisal 
components derive information from the need  

 
components, implicitly computed, which results to the 
elicitation of a suitable emotion response, represented 
in the agent’s behaviour.  Any changes in appraisals are 
dependent on the need level, which underlies the 
reasoning techniques that support the framework’s 
cognitive process. The motivation framework is based 
on literature by Abraham Maslow (Maslow, 1999), 
describing a renowned motivational hierarchy 
explaining human needs from the most basic to 
reaching self-actualization. According to Maslow, 
human beings first gratify the most basic needs, before 
they are motivated to move on to the next level, thus, 
each level takes precedence over others.  What makes 
this approach different from other appraisal-based 
approaches is the addition of the need-layers that 
function as a decomposer of task-specific events 
according to their importance and urgency.  

Most work in computational modeling of emotion 
focused on appraisal-based approaches (Gadanho, 
2003; Gratch & Marsella, 2004; Marcella & Gratch, 
2006). Although we are perhaps the first to introduce 
the integrated computational account of needs, a similar 
architecture was acquainted in the eighties for 
modeling behaviour-based robots by Rodney Brooks 
(Brooks, 1986). Though the idea of task-decomposition 
into different layers is similar, our architecture differs 
in the way the layers handle inputs. 

 

2. Proposed Model of Affect 
 
As a pilot study, we have restricted our agent to fit 

the scope of domesticity. This means the agent is able 
to perform simple tasks such as turning on or off the 
lights, providing weather information, cleaning the 
floor facilitated by a vacuum cleaner etc. The agent can 
also act as a game partner and play board-games. These 
tasks are carried out in two ways: established 
adaptation to changing surroundings (i.e.: modifying a 
room environment according to user preference – 
brightness level in the room, timely preferred TV 
channel) and by verbal instructions.  

In the proposed architecture (Figure 1), each task 
has a pre-fixed relation with one or more levels of 
Maslow pyramid. The manipulation of these needs is 
based on the agent’s causal interpretation influenced by 
both task-specific and general events. Task-specific 
events directly relate to the task modules. In other 
words, events are induced by the module involving a 
specific task (game module, vacuum cleaner module 
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etc.) For example, in a game-playing task, events may 
be a good movement, a bad movement, agent cheating, 
partner cheating etc. General events are those that are 
task-independent, and those detected by the agent via 
speech and facial modalities - such as successfully 
detecting insults/threats by his partner, smile or frown 
or even something simpler, such as detecting words 
accurately. Simply put, these events are inputs that 
affect various needs 'satisfaction' in the scope of the 
Maslow pyramid, producing varying need values 
(termed M-values). As events change quickly, M-
values vary on the same rhythm, also taking into 
consideration the values on previous state– producing 
dynamicity. These variations will be further taken as 
inputs by the Need Independent Features (NIF) 
Generator to appraise the needs in terms of Relevance, 
Urgency, Desirability, Unexpectedness and 
Unfamiliarity. Appraised needs are output as vectors, 
whereby each vector  is mapped into an emotion 
instance of a specific type and intensity. To account for 
the prioritization of need (which indirectly projects the 
importance and urgency of a task), a constant-weight is 
added to each instance, depending on the need-level 
(lower level with greater weight).  Finally, the 
dominating emotion obtained effects both the cognitive 
process and behavior-selection of the agent – similar to 
the conducts of humans.  Our current model illustrates 
six types of emotions – Happiness, Sadness, Surprise, 
Anger, Fear and Neutral. These emotions are elicited 
via two modalities, speech and/or facial. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 : Need-inspired Affect Architecture 
 

2.1 Task Independency 
 
As explained earlier, the agent’s causal 

interpretation is influenced by both task-specific and 
general events. In the real sense however, the agent’s 
interpretation is based on the Maslow variation (M-
values) which is in turn modified by these events. He 
does not directly analyze the internal operations of each 
task. Thus, the behavior of the agent is independent of 
the existing task(s). Therefore the agent is made aware 
of his needs by connecting the cognitive module to the 
Maslow need pyramid rather than directly to the tasks 
and its situations. In this way, this module preserves the 
scalability of tasks, whereby the agent’s tasks can be 

added or appropriately changed to suit applications in 
different domains. 
 

3. Conclusion and Ongoing Work 
 

The deficiency of needs is experienced by people 
emotionally. Their beliefs, goals and plans are 
influenced by their needs, and the progression towards 
satisfying their needs predict their emotions over time. 
Emotion on past, present and future events can be 
altered by altering their needs. These requirements lead 
us to a computational framework of emotion that is tied 
to a causal interpretation of an individual’s needs. We 
argue that the use of the Maslow need framework, 
which is evident in the nature of human beings, is a 
suitable technique for problems of prioritization in 
multi-tasking agents. Apart from that, this way allows 
flexibility in adding or modifying tasks according to 
various application domains. An initial demo of our 
early work can be accessed here (Robonauta GTH, 
2009). 

Currently we are testing the proposed algorithm in 
an Excel simulation, and the next step is to transfer this 
simulation to a formal evaluation. 
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Abstract

We investigate preliminary stages in en-
abling robots to talk with humans in a nat-
ural manner, and outline experiments. The
process is inspired by language acquisition in
infants, and by recent empirical evidence of
neuronal organisation.

1. Introduction

In this paper we describe preliminary stages in en-
abling robots to communicate with humans, us-
ing natural language. This starts with babbling,
analogous to the pre-linguistic infant in a proto-
conversation with its carer, progressing to learning
the meaning of utterances through mediated physi-
cal interaction (Saunders et al., 2009). This work is
inspired by the acquisition of language by human in-
fants, and by recent empirical evidence of neuronal
organisation.

Participants in our experiments talk to the robot
in natural, unrestricted language, about a blocks
world with objects of various shapes. The robot
must learn to “understand” this highly redundant
natural language, in which the same concept can
be expressed in a number of alternative ways (e.g.
“push the red box”, “give the red box a push”). Its
own productions may be more limited: asymmetri-
cal development is typical of human infant language
acquisition (de Boisson-Bardies, 1999, p 201-209).

2. Natural language, evolutionary
baggage and neuronal organisation

Language has emerged by recruiting mechanisms
that originally evolved for other purposes. For
instance, in English, French, Japanese, Chinese and
other languages there are many common homo-
phones, ambiguous words such as

no/know to/two/too their/there

We disambiguate such words by taking them in
context, processing short sequences of linguistic ele-
ments as coherent units.

The fact that we do not avoid ambiguous words
but resolve their meaning by processing short se-
quences suggests that such serial processing methods
are easily accessible. It seems likely that sequential
processing is based on exaptations of faculties orig-
inally developed for different purposes. As Steels
says: “the human language faculty is a dynamic
configuration of brain mechanisms, which grows and
adapts .... recruiting available cognitive/neural re-
sources for optimally achieving the task of commu-
nication” (Steels, 2007).

As well as Wernicke’s and Broca’s areas in the
brain other regions are involved in language process-
ing. See, for instance, Lieberman (Lieberman, 2000),
Dominey et al. (Dominey et al., 2003), Pulvermuller
(Pulvermuller, 2002) on why serial processing is a
key factor in the perception and production of
speech.

Thus, there is significant evidence that dual sys-
tems are needed for language processing. On the one
hand there is implicit learning of patterns and proce-
dures, without intentional shared reference. On the
other hand there is explicit declarative learning, in
which there is joint attention between teacher and
learner, and reference to objects, actions or relation-
ships.

This dichotomy is also described as a dorsal path-
way concerned with sub-lexical processing, object
interactions and phonetic decoding, in contrast to
a ventral pathway specialising in object identifi-
cation and whole word recognition. This func-
tional segregation is also characterised as a motor-
articulatory system on the one hand and a concep-
tual system on the other (Hickok and Poeppel, 2004,
Saur and Kreher, 2008). As described below, we
adopt this dichotomy in a simplistic manner in the
implementation of a language learning robot.

3. Implementation

Work is currently being undertaken influenced
by the constructivist approach of Tomasello
(Tomasello, 2003). The aim of this work is to enable
the development of language capabilities in a robot
through interaction with a teacher, an actual or
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simulated human. Initial assumptions are:
- The robot has the intention to communicate
- Communicative ability is learnt through interac-
tion with a teacher
- Perception and production of speech are based on
simulated mirror neuron type structures, in which
the same elements reflect components of perceived
speech and generate synthesized speech
- Memory sites include distinct areas associated
with implicit, pattern learning on the one hand and
explicit word learning on the other

The process is based on turn taking. Initially
the robot (a synthetic agent in preliminary experi-
ments) produces simulated babbling while a teacher
produces utterances in ordinary English, both repre-
sented as streams of phonemes. The agent’s output
starts as random syllables, but becomes biased to-
wards the teacher’s speech. The starting point is
taken as analogous to the stage at which infants
start canonical babbling (de Boisson-Bardies, 1999,
p. 45-46). Babbling is thought to play a key role in
early language development (Oudeyer, 2006, p. 148)
(Pulvermuller, 2002, p. 50)

The robot or agent segments the teacher’s utter-
ance into short sections in a variety of ways, based
on observed mechanisms. These include phonotactic
constraints based on distributional evidence, taking
the end of an utterance as a significant unit, taking
identified words or holophrases as anchor points for
further segmentation. Prosodic information plays a
key role for humans, and we plan to use it in fu-
ture. These segments join the robot’s store of pre-
lexical components, available for use in its produc-
tions. When the robot produces, by chance, sylla-
bles that can be concatenated to make a word, the
teacher will give a positive reaction, metaphorically
a “reward”. The new word becomes latched in mem-
ory, a candidate for future production by the robot
along with other syllables. Thus a lexical store is
built up, and words will be produced embedded in
a stream of non-words, ready to be given semantic
reference.

The acquisition of meaning would in reality take
place at the same time as speech segmentation de-
scribed above occurs. However, we are investigating
these processes separately initially in order to under-
stand each strand better. Experiments in a blocks
world, where a human interacts with the humanoid
Kaspar2, are described in (Saunders et al., 2009).
Our robots learn to extract the semantics of a series
of shapes associated with perceived speech patterns
(as strings of phonemes), visual and proprioceptive
perceptions.

An associative approach usually requires a large
number of learning episodes so that statistical reg-
ularities can be established. An alternative mecha-

nism, used here, is to have learning experiences bi-
ased through intentional reference, such as shared
gazing, pointing and other types of feedback to rein-
force the utterances of the teacher.

In developing the basis for conversation between
human and robot we cannot avoid the evolutionary
baggage that human language carries, and we need
to understand our own neural language processors if
we are to implement robotic systems that carry out
similar tasks.
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Abstract

The end goal of our research is to design
an emotion-based decision making system for
an autonomous and social robot. This means
that the robot can interact with people and/or
other robots and that it is the one who decides
its own actions. For this reason, a motiva-
tional model has been developed for its deci-
sion making system. This model uses mech-
anisms inspired by emotions and their func-
tionality in nature. The behaviours of the
robot will be oriented to maintain its internal
equilibrium. As a previous step, this model
has been successfully implemented in virtual
agents, as illustrated by the results given in
this paper.

1. Introduction

Emotions and robotics have been recently com-
bined. Many authors have stated the necessity of
implementing emotions in robots in order to im-
prove their capabilities. Some of them affirm that
robots need emotions for the same reason humans
do (Fellows, 2004). It has been proved that emo-
tions influence attention, memory, decision making,
and other areas that some years ago seemed not to
be related to emotion at all (Picard, 1998). Some re-
searchers stated that since emotions are essential in
nature for survival, they should be useful for building
autonomous robots (Cañamero, 2003).

The goal of our research is to construct a social
and autonomous robot and, based on the ideas previ-
ously stated, the implementation of emotions seems
to be ideally suited for our objective. Autonomy
implies that the robot has to be able to decide its
own goals, and then decide on its own behaviours in
order to achieve these goals. We currently have a
robotic platform developed for human-robot interac-
tion: Maggie. This is a social robot developed by the
RoboticsLab research team and is fully explained in
(Salichs et al., 2006).

The motivational system proposed in this pa-
per will enhance the autonomy of Maggie and it
has been successfully implemented on virtual agents
(Malfaz and Salichs, 2006).

2. Motivational Model

In Fig.1 the proposed motivational system is
shown. Based on other works, (Cañamero, 2003),
we consider that an autonomous agent selects its be-
haviours in order to maintain a stable internal equi-
librium. In our case, this internal equilibrium is re-
lated to the optimization of its wellbeing. The agent
will make its decision according to a motivational
model based on drives (internal needs), motivations,
and emotions. The wellbeing of the robot/agent is
defined as a function of its drives and it measures the
degree of satisfaction of its internal needs.

Figure 1: Motivational system

The Learning and Behaviour System is where the
learning process takes place. The input received by
the Learning and Behaviour System comes from the
state of the agent. This includes the inner and exter-
nal states and other exogenous actions not executed
by the agent, but by other agents. Within this sys-
tem, the agent evaluates and selects the action most
appropriate for a certain state, and then executes
the action selected. For this purpose, the agent uses
a reinforcement learning algorithm. By using this
algorithm the agent learns the long term value of ex-
ecuting an action in a certain state. The best suited
action to execute will be that which has the highest
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value.
In relation to emotions, based on the idea that

those are states elicited by reinforcements (rewards
or punishments) (Rolls, 2003), some emotions, such
as happiness and sadness, are used in the reinforce-
ment function.

Moreover, based on some theories that claim
emotions can motivate behaviours (Breazeal, 2002)
(Rolls, 2003), other emotions can also be a motiva-
tion, e.g. fear. According to Ortony (Ortony, 2003),
fear appears when the possibility of something bad
happening exists.

3. Experimental Results

In this section we present experimental results ob-
tained from two cases: the agent with no Fear mo-
tivation and the agent with Fear motivation. In or-
der to carry out these experiments the agent lives
with two kinds of opponents: a neutral agent who
randomly selects from a repertoire of non-aggressive
actions; and a dangerous agent, who 95% of the
time chooses its actions from a repertoire of non-
aggressive actions, while the other 5% of the time it
kicks.

When the agent is kicked it receives a significant
negative reinforcement. Therefore, interaction with
the second opponent may be dangerous although the
agent, at the beginning of its life, will not be aware
of it. When using this approach, Fear is related to
the worst experience the agent had while interacting
with an opponent.

As shown in table 1, the agent with no Fear in-
teracts with the dangerous agent even though this
opponent may kick it at times. In fact, during the ex-
periment, the agent interacts with the neutral agent
a total of 326 times and a total of 214 times with the
dangerous opponent.

This happens because while the dangerous oppo-
nent treats the agent kindly the majority of the time,
once in a while it behaves badly towards it. There-
fore, the long term value of the social interactions
learned through reinforcement learning is high.

Table 1: Number of interactions with both opponents

With no Fear With Fear

Neutral agent 326 376
Dangerous agent 274 4

On the other hand, when the agent had Fear as a
motivation, the agent interacted with the dangerous
agent a mere 4 times while it interacted with the
neutral opponent a total of 376 times, see table 1.

The agent’s consideration of the worst experience
while interacting with the dangerous opponent gives
the agent the ability to be able to detect a dangerous

situation. In doing so, it will learn what actions to
select.

On this particular occasion, it is after being pun-
ished several times that the agent considers that be-
ing next to the dangerous agent is dangerous. There-
fore, the agent learns to not interact with the agent
that can harm it. It has, in fact, become afraid of
being next to the dangerous agent.

Moreover, the agent learns that when it is scared
the appropriate action is to escape. This escape ac-
tion is not an a priori programmed action.
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In human brain, di erent sensor information is
thought to be processed in di erent area and inte-
grated in parietal area. Fig. 1 shows a model of neu-
ral mechanism for grasping proposed by Oztop et al
(Oztop et al., 2006). As shown in this gure, the in-
formation of hand and object is processed separately
and important features for grasping are extracted in
the hierarchical network.

Figure 1: Neural mechanism for grasping proposed by

Oztop et al. (Oztop et al., 2006)

In this paper, we aim to construct a hierarchi-
cal model for grasping like brain model. The hi-
erarchical model is thought to be plausible as de-
velopmental model, because an infant learns its
grasping skills gradually in the developing process
(Case-Smith and Pehoski, 1992). For this purpose,
we adopt deep belief network (DBN), proposed
by Hinton, for representing the multimodal infor-
mation in grasping, in which one modal informa-
tion is self organized to extract statistical informa-
tion of given data and di erent modal information
are easily integrated in the hierarchical architecture
(Hinton, 2007).

From grasping experiences, four kinds of multi-
modal information are extracted and input to neural
networks for tactile sensing, joint angles, hand im-
ages, and object image, respectively. In each modal,
raw sensor information are self organized using re-
stricted Boltzmann machine (RBM) and input infor-
mation is represented in tactile feature, hand fea-
ture and object image feature. In this model, it
is assumed that information on hand posture such

as joint angle and hand image are integrated as
hand feature before integration for grasping. Total
integration are processed using information during
grasping objects. After learning of integration, tac-
tile senses and hand information are recalled from
the object image by virtue of DBN properties (Fig.
2).

Figure 2: Reconstructing the tactile sensing and hand

features from an object image
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1. Introduction

One of the main claims of active vision (Ballard,
1991) is that finding data on demand, based on the
requirements of the task, is more e�cient than recon-
structing the whole scene by performing a complete
visual scan of it. This aids generalisation and a dra-
matic reduction of the needed visual computations.
Using this strategy, however, generates the need to
learn complex gaze control strategies dependent on
the pursued goals and the properties of scenes and
objects. For example, to be able to find an object in
the environment an agent needs to learn to use sev-
eral sources of information such as spatial relations
of objects and bottom-up saliency of scene regions.
In addition, if the system is genuinely autonomous
it also needs to develop a representation of the ob-
jects themselves, for example of potential targets,
cues and distractors, on the basis of generic reward
signals to be maximized and the visual control policy
used. Most of the models proposed in developmental
robotics do not use adaptive visual control and so are
ill suited to investigate these issues.

In a previous work (Ognibene et al., 2008) we pre-
sented a reinforcement-learning neuro-robotic archi-
tecture, based on neural population codes, which was
able to develop attention control policies by interact-
ing with the environment based on a rewarded reach-

ing task it had to accomplish. In this paper the same
architecture is used to investigate the types of inter-

nal representations that this same architecture de-
velops when exposed to two classes of environments
where objects are organised on the basis of contrast-

ing spatial relations (Figure 1).

A recent view on neural population codes proposes
that neural maps might be used to develop overall
probability distributions of stimuli (Pouget et al.,
2002). On the contrary, this study shows that ac-
tive vision systems tend to develop actions which
actively disambiguate the stimuli and acquire new
evidence only when needed: as a consequence, the
acquired representations do not reflect overall prob-
ability distributions related to stimuli but rather the
contextual relationships between them.

Figure 1: Examples of environments used to test the

model, drawn from two classes of environments L and

R. In each trial, the specific environment was randomly

drawn from L or R with a probability of 75% and 25%,

respectively. Both classes of environments were based on

2 to 5 green cues forming a vertical line, one blue distrac-

tor, and one red target. The cues, distractor and target

were located on the vertexes of a 5⇥ 6 matrix. In L en-

vironments, the target and distractor were located at a

random position respectively at the left and right of the

green line, whereas in R environments were located at a

random position respectively at the right and left of it.

2. The model

Figure 2: The architecture of the model.

The architecture and setup of the model (Fig-
ure 2.), used here in a simulated version, is now
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briefly described but the reader should refer to Og-
nibene et al. (2008) for details. The robotic setup
used to test the model is composed of a camera look-
ing down to a robotic arm. The arm acts on a work-
ing plane consisting of a screen which shows the vi-
sual stimuli of the task.

The architecture of the model is formed by three
main components:
(a) Bottom-up attention component. The input im-
age is used to activate a periphery map which iden-
tifies high-contrast regions on the basis of suitable
filters .
(b) Top-down attention component. The central part
of input image (fovea) is used as input of an actor-

critic model which learns to predict, by suitably ac-
tivating the output map of the actor (vote map),
the spatial position of the rewarded targets with re-
spect to the foveated objects. A potential action

map (PAM), based on leaky neurons, accumulates
evidence, furnished by the actor, on possible loca-
tions of the target while the fovea explores the scene
objects. An overall saliency map integrates informa-
tion from the periphery map and the PAM to select
the next eye movement on the basis of a dynamic
neural competition. All maps of the attention com-
ponents use an eye-centered reference frame.
(c) Arm-control component. Each fixation point, en-
coded in a eye posture map, suggests a potential tar-
get to a arm posture map: when the eye fixates a
location for enough time (3 time steps on average),
the arm posture map triggers a related arm action
on the basis of a second dynamic neural competition.
If the reached object is the target, the system gets a
reward of one, otherwise it gets a small punishment
(mimicking energy consumption).

3. Results and Conclusions

The tests of the model show that it learns an explo-
ration policy which initially assumes to be tackling
an L environment, so first searches the green line
and then, on this basis, the target on its left (two
eye steps). In the presence of an R environment,
this assumption fails and the agent searches the tar-
get directly on the right of the green line rather than
exploring anew. This strategy allows the system to
find the target with only one additional step.

Table 1 shows the activation of the vote map of
two agents respectively trained with L environments
or with both L and R environments (with a fre-
quency of 75% and 25%, respectively), when the
agents foveate either the cue or the distractor (a third
agent trained only with R environments developed
vote maps mirroring those of the L-trained agent:
data not reported).

These results show that the representations un-
derlying the gaze-control policies are not based on a
combination of all possible policies needed to tackle

cue distractor

L

L/R

Table 1: Activation of the vote map when the model

foveates the cue or distractor. L: agent trained only on

L environments for 60.000 trials. L/R: agent trained on

both L and R environments for 60.000 trials.

the two classes of environments. In fact in the lat-
ter case one would expect internal representations to
be a combination of the vote maps needed to tackle
the L or R environments in isolation (e.g., a sum or
a max of the two). Instead, the internal represen-
tations encode the specific exploration routines best
suited to solve the task at hand. This is especially
evident if one considers the vote maps related to the
distractor: when the system is trained with L envi-
ronments, the map does not encode the position of
target but only the action of foveating the green line,
whereas when trained with both L and R environ-
ments the system encodes the action of going to the
right of the green line as in this case the distractor
becomes a good predictor of the target located there.

These strategies exemplify a general principle used
by adaptive active vision system to tackle com-
plex environments. When agents must learn to au-
tonomously and adaptively solve tasks, the represen-
tations they develop reflect the actions that permit
to interact with the environment in order to acquire
new information and solve tasks given the informa-
tion acquired that far, more than the overall statis-
tics of scenes.
Acknowledgements Research funded by the EU
project IM-CLeVeR (FP7-ICT-IP-231722).
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1. Introduction

Many psychological studies, starting from the
classic paper (White, 1959) to more recent ef-
forts (Dayan and Belleine, 2002), show that chil-
dren are not passive learners but are intrinsi-
cally motivated to progress in learning. It is
such a form of active learning which has fas-
cinated roboticists and pushed them to think
about new learning architectures (Weng et al., 2001,
Oudeyer et al., 2007). Taking inspiration from de-
velopment in neuroscience and psychology, numer-
ous researchers (Weng et al., 2001, Scassellati, 2000,
Marshall et al., 2004) have persuasively argued that
a developmental approach could open new issues for
designing intelligent robots. According to a develop-
mental approach, a robot would be able to explore
its environment not to fulfill predifined tasks but to
learn a broad set of reusable skills.
In our work we want to explore new issues to sup-
port this field of research. Our objective is to develop
basic models and techniques, enabling a robot to ac-
quire new knowledge via self-motivated learning. We
expect that the robot will be able to grow its cogni-
tive capacity in an unlimited fashion to generate well
co-ordinated actions and later accomplish meaning-
ful tasks.

2. Methodology

In our opinion, self-motivation provides an agent
with the desire to manipulate the world and discover
new things. Interaction with the physical world has
a crucial advantage for open-ended learning, since
learning materials, i.e. training data, are basically
unlimited. Gil (Gil, 1996) proposed a methodology
for learning from the environment by experimenta-
tion. She described how it is possible to detect miss-
ing knowledge which leads to a need for learning. By
experimentation it is meant that the learning sys-
tem probes the physical world in order to fill the
knowledge gap. For example, the agent might just
randomly generate actions on its environment and
observe the consequences of these actions. This is
inspired from animals: “curious animals, faced with
a static environment, will go and perturb it, even
at great risk to their safety” (Grand, 1998). We will
start from the assumption that missing knowledge

of the environment leads to a need for learn-
ing. That is, the robot is always motivated to under-
stand the environment. It might need to model the
environment in order to predict the consequences of
its actions. Any unexpected behaviour of the envi-
ronment leads to identify a knowledge gap which trig-
gers the learning process. Although this developmen-
tal robot learns basically through self-motivation, it
takes also the advantages of a human partner. When
the world remains unpredictable, the agent will be
“frustrated” and looks for the human-teacher. Re-
inforcement learning with external human rewards
(Isbell et al., 2001) and learning by animal training
techniques (Blumberg et al., 2002) are some starting
points for us to define how human instructions can
be incorporated in the learning process. Technically,
these ideas and the algorithms for their realisation
can be formulated in the broad framework of rein-
forcement learning (Sutton and Barto, 1998). How-
ever, we have to create different kinds of rewards:
“external” rewards from the interaction with the
physical environment and with humans, and “inter-
nal” rewards from an internal motivational system.

3. Learning system

An important idea in our work is to organize the
learning process into successive learning problems or
developmental stages that build on previously ac-
quired sensori-motor organization and corresponding
representations in a hierarchical manner. This devel-
opment will be guided by a corresponding design of
the environment. We will design a motivational
system that analyses the accuracy of predictions
made on the environment, and resorts to the learning
process when addional information is needed. This
leads to design a learning system which uses both
experimentation on the environment and interaction
with humans as learning mechanisms. The overall
system architecture is depicted in Figure (1). The
motivational system controls the overall motiva-
tion and frustration of the agent and triggers the
learning system only when addional information
is needed to accomplish the general goal. This shall
be achieved by having continuous internal interac-
tion with the world-model and weighting different
reward signals coming from the environment in a
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Figure 1: Learning through self-motivation

given situation. That is, our approach is based on
a continuous and selective interaction with the en-
vironment (including a human partner) to design a
self-motivated robot. The model generation module
is a system which is trained to predict future envi-
ronment states from previous action/state pairs, and
to update the world-model.

4. Progress in Learning

In the following we briefly describe stages and
progress in learning which allow measuring the evo-
lution of the learning process.

Stage 1 (initial exploration) The emphasis here
is on building and updating the internal repre-
sentation of the environment. The robot sends
out random actions and receives information back
from the environment. This will generate map-
pings between the robot’s actions, the robot’s
state, and the environment’s state

Stage 2 (selective exploration and exploitation)
The robot should produce the “desire” to learn.
Here the motivational system will play a major
role: (i) it analyses predictions on the world
model, (ii) identifies the knowledge gap, and
(iii) triggers the learning process when new
information is needed to accomplish a global
goal. The motivational system could be seen as
a Meta-learner which learns how to generate the
desire to learn, i.e. how to trigger learning for
improving the reliability of the predictions of the
world-model. At stage 2 the robot is expected
to conduct one fully embodied autonomous
experimentation pushed by its motivational
system.

Stage 3 (learning from human) The robot
learns from humans when experimentation on
the surrounding world can not fill the knowledge
gap. This is what we call the frustration state of
the robot. Frustration could be generated when
the world remains unpredictable or remains
completely predictable. The motivational system
identifies the frustration state and triggers the
learning system to engage in interaction with the
human-teacher. At this stage, we expect that
under human guidance the robot will improve its
behavior into more complex sequential actions.
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Abstract

Paper proposes a reward–centric model of
attention emergence. Attention control is stu-
died from the e↵ectiveness point of view. Re-
ward is suggested to be a measure of atten-
tion movement e�ciency. Two scales of re-
ward, epigenetic and genetic, are considered
to explain emergence of top–down, agent dri-
ven, and bottom–up, stimulus driven, atten-
tion respectively. It is shown that reinforce-
ment learning framework can be smoothly ap-
plied to build a computational implementa-
tion of the model.

1. Introduction

Study of attention in natural and artificial systems
has seen impressive progress over past decades (see
(Frintrop, 2006) for a review). Applications of at-
tentional perception include very diverse domains:
object recognition and manipulation, robotic naviga-
tion, human–robot interaction, motion analysis, vi-
sual search, image and video classification and other.

Due to practical demand and availability of e�-
cient hardware modern research shows ever increa-
sing interest to the problem of attention emergence;
development of learning methods has been brought
to forefront.

Majority of computational attention systems are
based on supervised learning (e.g. (Frintrop, 2006,
Rasozadeh et al., 2007)) intended to solve visual
search tasks. Examples of search targets therefore
become a learning experience in such systems.

Current work embodies an alternative approach
that is based on learning optimal decisions about
attention movement. Several computational at-
tention models on this type implemented on the
basis reinforcement learning have been already de-
veloped (Shariatpanahi and Ahmadabadi, 2007,
Paletta et al., 2005, Ognibene et al., 2008,
Mozer et al., 2006). Also research devo-
ted to simulating shared attention and
gaze following (Jasso and Triesch, 2007,
Matsuda and Omori, 2001) should be noticed.

Existing approaches have significant di↵erences
and there is no single comprehensive framework for
understanding attention emergence. In particular,
there is a gap in understanding top–down atten-
tion control mechanisms and their integration with
bottom–up processes.

The goal of current research is to introduce a mo-
del of attention emergence capable to explain both
bottom–up and top–down attention emergence. It
is claimed that such model can be developed on the
basis of enactive system approach. “The only condi-
tion that is required of an enactive system is e↵ective
action” (Vernon, 2006).

Recent results in computer vision
(Paletta et al., 2005), neuroscience (Deco, 2004)
and psychology (Deubel, 2004) support evidence
that attention involves decision making and thus
can be seen from an e↵ectiveness point of view.
Following the reinforcement learning paradigm
widely employed for robot learning it is proposed
that attention control e↵ectiveness can be evaluated
in terms of delayed reward.

2. Model of Attention

Consider an agent perceiving the environment with
sensors P = {p1, . . . , pk}. At each time step t
agent perceives input Pt = {p1

t , . . . , p
k
t }, where pi

t =
(pi

t1, . . . , p
i
tni

) — measurements made by sensor pi.
Attention movement is a choice of an input subset

P̄t = P̄ (Pt) = {pj1
t , . . . , p

jq

t } for further processing.
E�ciency of attention movement can be determined
with a certain criterion J , such that optimal atten-
tion control maximizes value of J . It is proposed
that J can be described as a reward R(P̄t) related to
attention movement P̄t. Reward can have di↵erent
scales: two essential scales are proposed to explain
emergence of top–down and bottom–up attention —
epigenetic and genetic scale respectively.

Reward on an epigenetic scale is perceived by
agent and serves as reinforcer by increasing the fre-
quency of the action that results in reward. Such
reward for example can explain development of gaze
following in infants. As calculation of reward re-
quires focusing attention and there is a temporal de-
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lay in reward, in the scope of this proposal expected
discounted reward is considered as a source of atten-
tion control decision. Thus for discrete time criterion
J takes a following from:

J = E

" 1X

t=0

�tR(P̄t)

#
. (1)

Reward on a genetic scale has an evolutionary
meaning: survival of the fittest. This process caused
known bottom–up attention mechanisms to appear
presently. Such reward is not perceived by agent.

It can be seen that (1) corresponds to nonde-
terministic �–discounted cumulative reward used in
reinforcement learning. Therefore attention control
problem can be easily reformulated as a reinfor-
cement learning problem and can further be sol-
ved with known methods. Furthermore, attention
control can be coupled with existing robotic ar-
chitectures as (Taylor et al., 2009) within action–
perception loop, similarly to the system described
in (Ognibene et al., 2008).

Is should also be noticed that concept
of saliency, widely used in litera-
ture (Frintrop, 2006, Paletta et al., 2005,
Shariatpanahi and Ahmadabadi, 2007), can now be
understood as an approximation of reward.

Analogy between saliency and reward was already
proposed in (Jasso and Triesch, 2007): in their mo-
del focusing attention on more salient points brings
more reward. In current paper this analogy is rever-
sed and following hypothesis is proposed: saliency
is an anticipation of reward, i.e. the more reward
was associated with a stimulus in the past the more
salient for the agent it will become in the future.

Assuming above statements about nature of sa-
liency, important conclusions concerning reward cal-
culation can be drawn. On one hand, analyzing
known sources of saliency it is possible to model exis-
ting reward structures. On the other hand, given a
known reward structure new saliency measures can
be designed for specific applications.

3. Conclusions and Future Work

The paper brings forward a model of attention emer-
gence that extends previous work on learning me-
thods. The novetly of research is a provision of a
computational attention model that explains emer-
gence of both bottom–up and top–down attention.

There are two major directions of further research.
First, coherence of proposed model with modern
theories of attention is to be proven: experiments
should be carried out to show how reward structures
can be induced from known saliency measures. Also
a plausible neural implementation is demanded.

Second, since there are no limits on reward struc-
ture, it is possible to design complex rewards that

can depend on object recognition, logical reasoning
and other high–level cognitive functions. E�ciency
of such task–specific rewards is to be evaluated.
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Abstract

This paper addresses the problem of senso-
rimotor learning from the perspective of a↵or-
dances learning of simple objects. We are de-
veloping a scenario where a robotic arm inter-
acts with a polyflap, a simple 3-dimensional
geometrical object. We perform experiments
with a simulated arm using a physics simula-
tor, but we plan to use also a real arm. The
robot interacts with the object by pushing it
in di↵erent ways. We use Recurrent Neural
Networks to predict the arm and object poses
during this interaction, given a discrete set of
random actions that the robot can produce.

1. Introduction

Robots should be able to adapt and learn by in-
teracting in dynamic environments, if we want that
they acquire the kind of complex skills performed
by humans and animals in general. In altricial
animals (like humans) the development of com-
plex motor skills is continuously improved after
di↵erent stages of development. In these species
(Sloman and Chappell, 2005), the interaction with
the environment plays an important role for the ac-
quisition of sensorimotor abilities, and for the hierar-
chical acquisition of more complex skills based on the
ones previously acquired. This introduces us to the
concept of a↵ordance, which is for instance referred
to learning about and from actions performed by an
agent on an object. In (Gibson, 1977), a theory of
a↵ordances was developed. We can apply this theory
of cognitive development to the field of robotics by
employing, for instance, machine learning techniques
that allow the robot to predict action consequences
on certain objects. The interaction with objects and
in general with di↵erent environmental aspects allow
to shape the “mind” of the robot on the basis of its
acquired experience.

Taking into account that the environment and the
physical characteristics (embodiment) of a robot has
a complex structure, we have to think of proper sce-
narios where we can test these techniques and the-
ories. In (Sloman, 2006), simples scenarios using 3-
dimensional objects called polyflaps were proposed.

⇤The research reported of in this paper is supported by EU
FP7 IP ”CogX” (ICT-215181)

The objective is to steadily increase the complexity
of the space of actions and the structure of the envi-
ronment. That would allow us to evaluate algorithms
that can be useful for compositional (hierarchical)
skills development.

It is also important to identify what kind of per-
ceptions can drive learning for an autonomous robot.
Based on the way children acquire learning skills
at early stages of development, the works presented
in (Oudeyer et al., 2007, Roa et al., 2008) describe a
system in which the robot has an intrinsic motiva-
tion for learning, based on the interestingness of the
situations it discovers. For these tasks, a simple in-
trinsic reward mechanism is employed, which is pro-
portional to the increase of the error rate of some
classifier trying to predict the consequences of the
robot actions at a given time. The robot was able
to identify a↵ordances as correlations between its
space and actions and its consequences in the envi-
ronment. In this work, classifiers are used for predic-
tion and the robot is equipped with real-valued sen-
sors and actions comprising its sensorimotor space.
After training, there are di↵erent classifiers special-
ized (biased) in some regions of the state space. A
statistical mechanism to split the state space into re-
gions is implemented to support the specialization of
the classifiers.

2. Scenario

As already pointed out, we use a robotic arm which
interacts with a polyflap in a simulated environment
(Figure 1).

Figure 1: Learning scenario with a polyflap

We use a simulator that can track objects and re-
turns an object pose. Objects that we consider are
polyflaps and the arm body parts, which are simple
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objects from which we can obtain 3D information.
Thus, the task is to use machines that can predict
spatio-temporal sequences, and this can be seen as a
time-series prediction or regression problem. A sam-
ple s = [c, si]i=1,...,n is then a whole sequence of fea-
ture vectors si = [vi,mi], where v denotes a vector
containing visual data of an object (pose in homo-
geneous coordinates), m denotes motor information
(joints pose, joint velocities) and i a time frame num-
ber up to the limit n = 70, together with a motor
control command vector c. In practice, the actions
considered are pushing actions on a linear trajectory
applying a velocity profile (a 4th degree polynom) to
an online inverse kinematics solver and an horizon-
tal direction angle. The values are normalized with
mean 0 and standard deviation 1.0.

3. Learning Approach

The learning machines described in
(Oudeyer et al., 2007, Roa et al., 2008) can pre-
dict short-term consequences of actions. They
use an active learning mechanism which uses a
measure of learning progress based on the error
prediction to select next actions according to this
interestingness measure. In this case we are facing
a spatio-temporal prediction problem. Recurrent
Neural Networks (RNNs), and more specifically
Long Short-Term Memory (LSTM) machines
(Hochreiter and Schmidhuber, 1997, Graves, 2008)
have been shown to accurately predict sequences
over extended periods of time. Another approach is
the CrySSMEx algorithm(Jacobsson, 2006) which
could either extract a probabilistic finite model (a
substochastic machine) of the experiences learned
by the RNNs (LSTM) or be used itself to analyze
the sensorimotor space (as a dynamic system)
over several periods of time, and finally extract a
model. More importantly, these models should give
us a categorization of di↵erent object behaviours
and corresponding a↵ordances, i.e., given similar
objects (similar features) the predictions should
be similar. By using these machines, it is possible
to evaluate the certainty of the machine to pre-
dict action consequences over several periods of
time. This mechanism would a↵ord to simulate
a kind of mastery driven action selection (if the
RNN successfully predicts action consequences)
or curiosity driven action selection (if the RNN is
failing to predict action consequences and there is
learning progress). Other kinds of drives might be
novelty (unpredictable action consequence), surprise
(unexpected outcome) or interactive (based on a
human reward/punishment signal). A feature vector
in a frame i is processed at a time step t. The
RNN should then predict the corresponding feature
vector in the next frame i + 1 at some time t + �,
till i = n. Initially, we use gradient-based methods

for o✏ine learning and in online experiments this
knowledge might also be used as a kind of knowledge
transfer method. In general, a LSTM is composed
of input units, special units (gate units, memory
cells) or conventional hidden units. The weights w
are learned by using a modified gradient descent
algorithm, that together with the special units
avoid the problem of exponentially decaying error
(Hochreiter and Schmidhuber, 1997).

4. Preliminary experimental results

In order to show the convergence of the LSTM ma-
chines we performed o✏ine experiments. In a prelim-
inary experiment using 10-fold cross-validation sets
and 10 hidden nodes in the network, we obtained
the results shown in the experiment 1 in Table 4.
SSE denotes the averaged sum of squares error for
test sets, which is the objective function minimized
by the LSTM and is a good performance measure
for regression problems. In the experiment 2, we
only used feature vectors si = vi, i.e., only contain-
ing polyflap poses. Because of the non-deterministic
nature of a certain control command, slightly di↵er-
ent behaviours are produced. We plan to use active
learning techniques driven by e.g. curiosity for the
selection of samples.

Exp. Avg. epochs Avg SSE Samples

1 4700 0.03 500
2 5622 0.007 500

Table 1: Preliminary results
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Abstract

Much human experience (particularly expe-
rience mediated by language) appears to be
intrinsically finitistic. In contrast, many phe-
nomena in the experienced world are conven-
tionally measured and modeled by intrinsi-
cally infinite continua, based on the system
R of real numbers but including much more
complex spaces. We briefly describe how to
combine finite topological spaces with strat-

ified manifolds into a conceptual and ana-
lytic tool with diverse applications. To illus-
trate the use of this tool, we state a theo-
rem showing how adopting any “circumplex
model of aÆect” forces strong topological re-
strictions on continuous families of schematic
stimuli that emotional response. This purely
mathematical theorem has strong practical
implications for studying human or robotic
emotions—for design and interpretation of ex-
periments as well as for theory construction.

1. Introduction

The most telling point in London’s critique (London,
1944) of Lewin’s Principles of Topological Psychology

(Lewin, 1938) is the observation that “Lewin in re-
ality does not utilize one single theorem of topology.
Always there is an interminable use of a few defini-
tions ripped out of their proper context” (p. 287).
Having made that point, however, London himself
falls deep into error—and then shows the way out.

In topology notions of connectivity and conti-
nuity, between which a very close relation ex-
ists, imply an infinitely structured space (that
is to say, an infinite set of points)—a fact
which Lewin acknowledges is presupposed by
topology. [. . . ] Lewin goes on further to say
that, as far as he knows, mathematics has not
yet followed up Riemann’s suggestion that it
is not necessary logically that spaces should
be infinitely structured. But finite spaces and
geometries have been developed and investi-
gated for some years. [. . . ] [I]t would be with

such finitely structured spaces that a geomet-
rical or spatialized coordination of psychology
might be attempted [. . . ]. (288–289)

London’s error is to assert that “connectivity and
continuity [. . . ] imply an infinitely structured space”
(like R and constructions based upon R, e.g., Eu-
clidian spaces, manifolds, metric spaces, . . . ). The
way out is to become aware that not only do they
not mathematically “imply” any such thing but in
fact there is a rich universe of “finitely structured”—
indeed, finite—topological spaces, in which certainly
all the “connectivity” (and arguably all the “conti-
nuity”) of, e.g., the universe of compact diÆerential
manifolds is realized. For background on finite topo-
logical spaces, see Stong (1966), McCord (1966), and
Barmak & Minian (2008).

2. Circumplex Models of AÆect

Russell (1980) describes “a circumplex model” as
both as a way psychologists can represent the
structure of aÆective experience [. . . ] and as a
representation of the cognitive structure that
laymen utilize in conceptualizing aÆect. (Rus-
sell, 1980, p. 1161)

That particular model features eight “aÆective con-
cepts [. . . ] in a circle in the following order: pleasure
(0), excitement (45), [. . . ], sleepiness (270), and re-
laxation (315)” (ibid.). Other circumplex models of
aÆect have diÆerent numbers of “aÆective concepts”
and/or diÆerent names (see, for example, Fig. 1,
which illustrates a 12-aÆect circumplex investigated
by Yik, Russell, and Steiger); but—although we have
not reviewed the entire, very large, literature—it ap-
pears that, like Russell’s, all (or the vast majority
of) these models presuppose, whether as an ideal
form or as a concrete construction literally embed-
ded in some reified Cartesian plane described by real
‘dimensions’ (as psychologists call what most math-
ematicians would call ‘linear coordinates’) bearing
names like “pleasure” or “activation”, a circle with
infinitely many points along which a small, finite
number of “aÆective concepts” are situated more or
less precisely (for instance, by associating them with
angular measures between 0 and 360 degrees).
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Figure 1: A 12-aÆect circumplex of Yik, Russell, and

Steiger (adapted from a figure in Yik & Russell, 2004).

As Fig. 1 makes clear, any such construction leads
directly to a stratification of the circle, i.e., a parti-
tion into a finite set of points interpolated by a finite
set of (open) arcs, each arc having two of the points
as its endpoints. A general topological construction
(Rudolph, in preparation, will give details) converts
that stratification to a finite topological space. For
instance, the Yik–Russell–Steiger 12-aÆect circum-
plex becomes a 24 -point topological space of strata;
each of the 12 “sharply defined” points on the cir-
cle becomes a so-called “closed point” in the finite
topological space, and each of the 12 open arcs be-
comes a so-called “open point” there. This maneu-
ver can be viewed as a simple example of how the
notion of “emergence of meanings through ambiva-
lence” (Abbey and Valsiner, 2005) can be mathe-
matically formalized; the ambivalence in these cases
is between ‘sharp’, named “aÆective concepts” (mod-
eled by 0-dimensional strata) and ‘fuzzy’, unnamed
but not meaningless “aÆective concepts” (modeled
by 1-dimensional strata). The distinctive feature
of the strata-spaces of circumplexes is that each
point, ‘sharp’ or ‘fuzzy’, has exactly two ‘immediate
neighbors’ (always of the other sort); for instance,
in Fig. 1, “Pleased” is neighbored by “ambivalent
between Pleased and Elated” and “ambivalent be-
tween Pleased and Serene”, while “ambivalent be-
tween Sluggish and Sad” is neighbored by “Sluggish”
and “Sad”.

A fundamental theorem about circumplex models
can be roughly stated as follows (Rudolph, in prepa-
ration, includes a precise statement and proof). Sup-
pose that a particular circumplex model C of aÆect
is valid, and consider any continuous family M of
stimuli that reliably evoke aÆect. (For instance, M
might be the space of aÆectively-meaningful facial
configurations, considered as a subset of a Euclidean
space of dimension at least 21, by identifying a con-
figuration with its vector of continuous degrees of ac-
tuation of up to 21 muscle groups; compare Wehrle
et al., 2000.) For a stimulus S in M , let F (S) denote
the aÆect (sharp or two-way ambiguous) evoked by
S. Then at least one of three things happens. (1) F
is discontinuous: for some two arbitrarily close stim-
uli S1, S2 in M , f(S1) 6= f(S2). (2) F has “dead

ends” (local extrema): there is a region U in M and
an aÆect A in C having neighboring aÆects B and

Z, such f(S) = A for all S in M , while for all S0

su±ciently close to M , f(S0) = B (not Z). (3) M
has an unpatchable “hole” in it—no matter how you
extend the ‘meaningful’ stimuli in M to a larger set
of stimuli that can be described by a set of entirely
independent variables, there will be (lots of!) these
new stimuli that are ‘meaningless’. (For instance,
assuming a circumplex model is valid, there must be

many vectors of degrees of actuation of facial muscles
that produce configurations that are not aÆectively
meaningful; which is observed.)
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1. Introduction

In human-language communication, vocalization is
one of the most e– cient channels because humans
can share a large lexicon within a short duration of
time. Human infants start to understand caregiver’s
words from eight months of age and produce their
flrst word by the end of their flrst year. Meanwhile,
they exhibit mimicry of adults’ single vowels by eight
months of age as well as that of adults’ strings of con-
secutive vowels by 14 months of age(Jones, 2007).
Therefore, the development processes of lexicon ac-
quisition and vocal imitation seem to overlap each
other. Furthermore, we conjecture that these pro-
cesses might facilitate each other. For example, the
ability of vocal imitation could help infants to vocal-
ize unheard words, and the knowledge of a lexicon
and its correspondence to objects could help them
to imitate partially inaudible words. What kinds of
mechanisms underlie the developmental processes of
such complementary abilities?

Synthetic studies have attracted wide attention
as one of the most promising approaches to re-
solving such questions of developmental mechanisms
(Asada et al., 2009). In previous work, the develop-
ment of lexical acquisition (Roy and Pentland, 2002,
Yoshikawa et al., 2008) and that of vocal imitation
(Kanda et al., 2007, Miura et al., 2007) have been
modeled as learning processes. However, such stud-
ies on theses abilities have generally been conducted
separately, and thus their interaction has remained
unexplored.

In this paper, we propose a method for simultane-
ous development of vocal imitation and lexicon ac-
quisition through mutually associative cross-modal
mapping using subjective consistency. Subjective
consistency of a signal from each pathway in the
mapping is calculated by its proximity to those from
others and used as a contribution rate in integrating
signals. The integrated vector is used as a learn-

Figure 1: Assumed environment of caregiver-robot inter-

action

ing signal that is expected to ignore errors of the
caregiver along with the learning progress of other
pathways.

2. Assumptions

A robot and a caregiver take turns in an environment
that includes objects (Fig.1). In each step, it looks at
either the caregiver or any of the objects and decides
whether to utter. Then, the caregiver selects either
of three types of behaviors: replying, showing, and
describing. The behavior of the caregiver is success-
ful based on the pre-determined probability of each
type (pR, pS , pD).

Through such interactions, it learns connection-
weight matrixes between nodes in two difierent lay-
ers, namely those between one’s own phonemes and
the caregiver’s phonemes W uv (imitation mapping),
those between the caregiver’s phonemes and ob-
jects W vo (word-listening mapping), and those be-
tween objects and one’s own phonemes，W ou (word-
producing mapping) (Fig.2).

3. Selective combination based on
subjective consistency

We propose a method of selective combination to
create a reliable learning signal based on subjective
consistency. Let xi and xj be external input vec-
tors to the i-th and j-th layers and xij be a di-
rect prediction vector of xj from xi by the map-
ping with W ij . Furthermore, suppose that there
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Figure 2: Mutually associative cross-

modal mapping
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is another layer labeled by k that receives a vec-
tor from the i-th layer and outputs an indirect pre-
diction vector xkj to the j-th layer. Three vec-
tors, xj , xij , and xkj , are regarded as potentially
having information for learning W ij . A integrated
vector xj is calculated as xj = f(xj , xij , xkj) =
λjxj + λijxij + λkjxkj , where λn (n = j, ij, kj) rep-
resents a subjective consistency of each vector. Here,
each vector’s subjective consistency indicates how
close it is to other vectors, and it is calculated by

λn = exp
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, where σ is the pa-

rameter of sensitivity for consistencies. The inte-
grated vector is used as a learning signal. It is ex-
pected not only to basically bias the learning of W ij

to predict the current signal xj from xi but also to
ignore xj when it seems to involve errors of the care-
giver along with the learning progress of the other
pathways (W ij and W kj).

4. Simulation

We conducted a series of computer simulations to
show the validity of the proposed method for mutu-
ally associative cross-modal mappings. We assumed
that the number of objects was 39 and the number of
phonemes was 37. The parameter sigma was empir-
ically set to 1.0 for good performance. We compared
the learning performances of the proposed method
(hereinafter proposed) to those of another method
without integration based on subjective consistency
for updating the connection matrix (hereinafter di-
rect).

We ran 10 sets of simulation with 200,000-step in-
teraction for difierent sets of parameters pR, pS and
pD. These parameters were set to be equal with
each other and varied from 0.2 to 1.0. Figure 3
shows the transitions of the average performance of
each mapping over difierent sets of simulation, where
pR = pS = pD = 0.2. Figure 4 shows the flnal perfor-
mances of the entire learning process with respect to
the success rate of the caregiver’s behaviors. This is
calculated from the average performances among all
three mappings. We can see that the performance
of both methods is high in the case of a high suc-
cess rate of the caregiver’s behaviors. However, the

performances of direct (fllled symbol) becomes worse
along with the decrease in the success rate, while that
of proposed (blank symbol) remains high against the
decrease of the success rate.

5. Conclusion
In this paper, we proposed a method to combine sev-
eral sources of a learning signal for mutually asso-
ciative cross-modal mappings, which is formed by
an external input and internal outputs from possible
streams of mapping within it. The subjective con-
sistency of each signal, which evaluates how close it
is to other signals, is used to weight it to calculate
the combined signal. The proposed method makes it
possible to successfully ignore the external input in
the case where the caregiver fails to give examples of
correct mapping, which is presumed to be typical in
real caregiver-infant interaction.
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Abstract

This work presents a follow-up to our 2007
EpiRob paper in which we showed the philo-
sophical foundations to our approach to vision
for “cognitive robotics”. Whereas our empha-
sis by that time lay on the notion of the thing-
in-itself, this time we concentrate on the dis-
cussion on developmental issues involved in
our undertaking to arrive at a specific form
of a cognitive robot: an assistive robot in a
home setting. This work outlines major re-
search issues tackled.

1. Research questions

A far goal, such as a cognitive assistive robot serving
at the user’s side in a home environment, involves the
following questions: What is “cognition”? Can we
locate a common ground of argumentation between
di↵erent disciplines involved in its discussion? What
are useful interdisciplinary starting points?

Perception – particularly a remote mode such as
visual perception – is of utmost importance for a
cognitive agent working in interaction with its en-
vironment. Hence, for the special case of vision for
robotics, there are more specific questions entailed,
e.g.: Which “kind” of computer vision output can be
used and what do we do with it?

We will later see that we chose a functional ap-

proach which itself, however, entails a lot more ques-
tions: What is the minimal set of functions that seem
necessary for situated perception in robots? What
is the glue that holds them together? What is the
“knowledge” of the system. Especially the latter
question already indicates that developmental con-
siderations become crucial in this discussion, as at
least the knowledge of any living cognitive system is
built up and not pre-given. For assistive robots, we
relax this constraint and argue for a concise defini-
tion of innate structure paired with pre-given con-
cepts.

⇤This work has been supported by EU-Projects XPERO
(contract no. 6029427) and CogX (contract no. 215181) as
well as by the Austrian Science Foundation (grant no. S9101).

2. Our approach

Working on perceptual capabilities of cognitive
robots means understanding the “homunculus” in-
side the cognitive system that looks at the images
and interprets them, guiding action and knowledge
enrichment. Our stance is that it needs to use a lot
of knowledge which is not in the data itself. This
is what we refer to as the important and di�cult
bridge from quantitative data (delivered by the vi-
sion techniques) and qualitative information that fits
the knowledge structures of the agent. This guiding
knowledge is built up by the system itself, but it
needs to start with something. For assistive robots,
we propose, this amount of predetermined informa-
tion might be quite high.

From a philosophical point of view, we are neces-
sarily facing an inseparability of ontology and epis-
temology. This is due to the fact that humans de-
sign robots and are thus defining their ways of ac-
cumulating knowledge and hence also what they see
and learn. This seems trivial, yet is crucial to be
thought of when talking about “development” or na-
ture vs. nurture.

Considering a Kantian approach, we may talk
about the needed a priori concepts of which Kant
himself named at least four: space, time, causality,
and number. For home robots, we can expand this
list much further, for developmental robotics less fur-
ther. This trade-o↵ is an important design choice.
In any case, a priori concepts must be defined care-
fully, which has sometimes been made explicit, e.g.,
by (Hamlyn, 1990): “Experience can make us see
that certain things are so. We may not be able to see
them in that way unless we have the concepts which
are presupposed in so seeing them.”1

To put it in a nutshell, our stance within this dis-
cussion is that for research on assistive robots it is
totally fine to pre-give quite a lot of “innate knowl-
edge” instead of letting the robot evolve and develop
totally by its own. The major open question then
remains how it is possible that the agent learns on

top of this pre-given knowledge all the stu↵ it needs
to know in order to accomplish his very task: to

1Cited after (Russell, 1999).
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Figure 1: Our functional interdisciplinary approach

serve the human on his/her side. Consequently, the
concepts that are pre-defined need to be stored in a
manner that further information pieces can be seam-
lessly incorporated.

3. Cognitive Functions for Robots

We are following a functional approach to robotics
in order to account for the interdisciplinary nature
of our research goal. As shown in Figure 1, this
is where the analytical approach of the humanities
and the synthetic one of the technical sciences can
meet: analysing which “cognitive functions” are ob-
servable in living cognitive agents may lead to the
insight which are equally needed in an artefact. This
helps us synthesising them and leads to the possi-
bility to apply behaviouristic methods for assessing
functional fit. The goal is to circumvent the ill-posed
“implementation of intelligence” that has led artifi-
cial intelligence research astray.

To be more definite, we currently have defined the
following functions to be crucial for vision in an au-
tonomous, intelligent, cognitive assistive robot: in-
tentionality (i.e., task-guidedness), prediction (antic-
ipating what is likely to be seen next), abstraction
(seeing the concept behind an instance), generali-
sation (learning abstract descriptions), and symbol
binding (connecting seen things to one’s ontology)2.

These functions work – along with a non-
perceptual ones – on a shared ontology using a
common representation format. Figure 2 shows
our vision of this ontology which contains “vision-
near” as well as more abstract concepts. The
relations are giving the semantics, e.g., a cup
that can be moved and is a container directly gives
“a↵ordance”-information and enriches thus the
knowledge about the cup for concrete situations.

The amount which of these concepts and relations
are developed and which are pre-given is not only
a matter of design but also of the intended niche
of the robot. With specific regard to vision prob-
lems, a feasible approach is what we started with
already in (Schlemmer et al., 2007): Pre-giving cer-

2These are the same cognitive functions – although not
explicitly termed this way – that we have already touched
in (Schlemmer et al., 2007).
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Figure 2: Various cognitive functions connect to a com-

mon ontology.

(a) Closures
by (Zillich, 2007).

(b) Blobs after pro-
cessing.

(c) Best arch hy-
pothesis.

Figure 3: Detection of a door by detecting its surrounding

“arch” (door frame).

tain structural relations (on top of, left of,...) and
using simple blobs in the image that can be described
by these relations. This leads to higher-order object

concepts that describe structures like arch or stack.
They, in turn, can be used to describe concrete in-
stances of actually (semantically) much richer con-
cepts, such as door. Figure 3 shows the detection of
a door by its surrounding arch.

Such a lax hierarchical composition of object con-
cepts bails rich potential for an assistive robot in
interpreting the world of humans – which is exactly
its ecological niche.
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It'appears'that'the'topic'of'cognitive)development'went''
mainstream' in'AI' and' robotics' in' the' last' 10' years' or'
so1.'� ����� "�!�� ����������!( � ���� ���������������!�#��
development' and' his' genetic' epistemology' are'
receiving'an'unprecedented'interest.''
On' the' other' hand' a' brief'historic' research' clearly'

shows' that' his' ideas' have' been' introduced' and' reD
introduced' to' the' AI' community' on' several' occasions'
and' almost' always' independently' during' the' last' 40'
years.''
In'this'paper'I'report'some'preliminary'results'of'an'

ongoing'research'project'the'aim'of'which'is'to'identify'
and'critically'compare'the'approaches'to'computational)
modeling)of)cognitive)development'directly'inspired'by'
����� �����!( ' genetic' epistemology.' Some' of' these'
results' presented' here' were' presented' during' the' two'
symposia'that'I'have'organized'within' the'annual'Jean'
Piaget'Society'meetings'2004'and'2009.'
The' paper' is' organized' in' the' following' way:' for'

�����%���!��&� �#��&� ������� �'�� � !���"��� present)' I'
present'a'sample'or'two'of'relevant'research'works'with'
a'short'comment'for'each'one.'In'the'second'part'I'point'
to' some' of' the' commonalities' among' them' and' draw'
attention'to'areas'where'there'has'been'little'progress.'
Papert,' (Papert,' 1963),' Boden' (Boden,' 1978)' and'

Rosenberg' (Rosenberg,' 1980)' all' pointed' to' the'
potential' mutual' benefit' that' AI' and' Piagetian' theory'
can' get' from' each' other:' AI' (with' its' methodologies)'
can'���������!������!( ' theory'which'often' relies' on'
notions' that' lack' specific' details.' In' return'AI' can' get'
advantage' from' Pia��!( � big) picture' framework' of'
cognitive'development.''
One' of' the' first' attempts' to' build' programs' that'

simulate' infant' behavior' in' variety' of' Piagetian' tasks'
(like'class)inclusion'and)conservation)of)quantity)'is'the'
work'of'Klahr'and'Wallace'(Klahr'and'Wallace,'1972,'
1973,' 1976).' Along' similar' lines' Baylor' et' al' (1973)'
and' Young' (1976)' developed' simulations' for' the'
seriation'task'where'children'are'asked'to'order'a'set'of'
objects' along' certain' attribute' (e.g.' length' or' weight).'
All' these' models' used' production) rule) systems' (i.e.' a'
list'of'ConditionDAction'pairs)'to'model'infant'behavior'
at' different' stages' of' development' and' at' different'
granularity.' Low' level' perception' processes' were' not'
modeled,' and' the' programs' were' given' high' level'
description'of'the'problem'space'(e.g.' the'position'and'

                                                 
1 As'witnessed'by'the'emergence'of'several'conferences'like'
Epigenetic'Robotics,'the'International'Conference'on'
Development'and'Learning,'as'well'as'several'workshops'on'
Developmental'Robotics'within'AAAI'symposia.'Most'of'
them'were'initiated'at'the'turn'of'the'new'millennium. 

attributes' like' color' and' length' of' the' blocks' in' the'
seriation' task'simulator'by'Young).'The'creative'work'
was'to'find'and'order'the'set'of'rules'(e.g.'If'you'see'the'
biggest' block' THEN' put' it' first' in' the' series)' which,'
starting' from'some' initial' configuration,'will' come' (or'
not)' to' the' goal' configuration,' exhibiting' behavior'
similar'to'the'children'of'particular'stage.''
What'is'curious'for'these'early'works'is'the'virtual'

absence'of'reference'to'the'notions'scheme,'adaptation,'
�����  �����!������������!����!�������!( �!����&���"������
the' spirit'of' the' then'dominant' information)processing)
paradigm' (within' the' cognitive) turn' in' psychology),'
some'of'the'preferred'terms'were'knowledge)structures,)
information)processing,)discrimination,)generalization,)
and'the'like.)''
This'changed'd"����� !��� '�� �$���'Gary'Drescher'

(Drescher,' 1985,' 1987,' 1991)' undertook' probably' the'
most' ambitious' attempt' until' then' to' give' a'
computational' model' for' the' schema' learning'
mechanism,' and' used' this' mechanism' in' a' simulated'
agent'which'would' learn' a' useful' representation'of' its'
environment' with' no' innate' knowledge.' 
�� ���( �
simulation' included' a' discrete' 2D'microworld,' baby( �
body,'her'visual'field'(foveal'and'peripheral),'one'hand,'
objects,' and' a' set' of' innate' primitive' actions' (grasp,)
move=hand=backwards)' and'primitive' perceptual' items'
(hand=at=1=1,) hand=closed,) hand=grasping=something).'
Schemas' were' represented' as' triplets'
(context/action/consequence)' where' context' and'
consequence' can' be' conjunctions' or' disjunctions' of'
(possibly'negated)'items.'Drescher(s'main'contributions'
were:' a)' a' statistical' technique' called' marginal)
attribution'which'learns'reliable'schemas'that'for'given'
context'can'predict' the'consequences'of' the'actions' in'
the'microworldc' and'b)' introduction'of' synthetic) items'
which'which' subsume' several' primitive' (or' synthetic)'
items.'

Quite' independently' a' research' group' in' Geneva'
called' CEPIAG' (for' Cybernétique' Epistémologie'
Psychologie' Intelligence' Artificielle' Génétiques)' has'
produced' a' considerable' body' of' research' during' the'
early' 1990.' To'my' knowledge,' they' reported' the' first'
physical'implementation'of'a'constructivist'agent.'They'
also' provided' a' minimal' social' context' for' the'
developing' agent' by' including' a' second'mother' robot.'
Unfortunately,' their' work' has' largely' remained'
unpublished' save' some' internal' publications' and' non'
English' language' local' conferences' (Schachner,' 1996c'
Schachner'et'al.,'1999c'Ducret'et'al.,'1999).'The'robot'
could'move'around'on'two'wheels'and'had'needs'to'be'
satisfied' (like'being'hungry'or' sleepy).'The' schema' in'
their'implementation'comprised'three'parts:'sensorium,)
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motivarium,) and) motorium.) 
��������� $��!� ����!( �
current' needs'were' (motivarium)' it'would' try' to' sense)
(assimilate)' the' current' situation' (sensorium)' and' (in'
case' of' successful' assimilation)' would' apply' the'
appropriate'actions'(motorium).' 'Learning'consisted'of'
(among' other' things)' in' getting) the) right) ordering) of)
execution)of)schemas'in'order'for'a'need'to'be'satisfied.'
New'schemas' could'be'produced'by' the' existing'ones'
by:' a)' differentiation' (e.g.' original' schema' with' only'
motorium' specified' (e.g.' go_forward)' gets' closer' to' a'
light'source'or'makes'the'robot'touch'an'object'in'front'
of'it)'when'motivarium'and'the'sensorium'part'will'be'
specified' depending' on' the' consequence' of' the'
execution'of' the'motorium'part,'b)'assimilation)of) two)
existing) schemas) (e.g.' one' schema' has' the' action'
turning=left)'in'the'motorium'part'and'another' turning=
right)' when' merged' they' will' produce' a' new' schema'
which' will' move' the' robot' forwardc' and' c)' by'
introduction' of' meta=schemas' where' the' motivarium'
and' sensorium'part'will' be' specified' (e.g.' the' robot' is'
hungry'and'want'to'go'to'a'state'where'it'is'not'hungry)'
and' the' learning' mechanism' will' have' to' find' one' or'
several' existing' schemas' that' would'move' the' system'
from' the' actual' state' (hungry)' to' the' desired' one' (not'
hungry).''
The' focus' of' my' group' was' to' come' up' of' a'

mechanism'where'a'simulated'agent'in'a'2D'mazeDlike'
environment' would' autonomously' learn' a' useful'
representation' of' environment' out' of' its' interactions'
with' the'environment' (Stojanov'et'al.,'1996c'Stojanov,'
2001c' Stojanov' et' al.,' 2006).' The' agent' is' able' to'
perform' 4' elementary' actions' (moving' forward,'
backward,'left,'and'right)'and'had'only'a'touch'sensor.'
Initially' the' agent' had' only' one' schema' comprised' of'
random' sequence' of' the' elementary' actions' (e.g.'
FFRFFFLFFFRBFFFF).'The'agent'tries'to'perform'the'
whole' sequence' but' environmental' constraints' would'
make'it' impossible'at'certain'point'(e.g.'going'F'when'
in' front' of' an' obstacle).' In' that' case' the' agent' would'
skip'the'impossible'action(s)'and'continue'with'the'next'
possible' one.' The' actually' executed' subsequence' (the'
enabled) subschema)' would' then' be' memorized,'
together' with' the' link' to' the' previous' enabled'
subschema.'We'called'this'process'accommodation'and'
the'result'of'it'was'a'repertoire'of'enabled'subschemas,'
with' their' contingency' links.' The' environment' would'
be' completely' assimilated' if' at' every' moment' (after'
having' executed' a' particular' enabled' subschema)' the'
agent'could'find'a'sequence'of'enabled'subschemas'that'
would'bring'it'to'a'desired'place'in'the'environment.''
After' 2000' there' were' dozens' of' researchers' that'

proposed' their' own' version' of' Piagetian' inspired'
constructivist' agents' who' have' suggested'
computational' mechanism' for' schema' based' learning,'
including' assimilation' and' accommodation'
mechanisms.'For'example,'Perotto'(Perotto'et'al.,'2007)'
and'Guerin' (Guerin'&'McKenzie,' 2008)' worked'with'
simulated' agents' and' " ��� �� #�����!� ��� 
�� ����( �
schema'construct.''

Some' tentative' conclusions:' first,' a' trend' can' be'
observed' where' computational' models' move' from'
��������� �����!( � ����#���� �"�����  ���� ��!���� �����
level' tasks' towards' trying' to' simulate' earliest' periods'
(beginnings'of'the'sensory'motor'stage)'of'the'cognitive'
development.''
Second,' it' seems' that' several' researchers' starting'

from' quite' abstract' and' somewhat' loosely' defined'
Piagetian' notions' like' the' schema' mechanism,'
equilibration,'accommodation/assimilation'and'the'like,'
independently' came' up' ' with' rather' similar'
computational' mechanisms.' For' example,' most' of' the'
above'computational'models'of'a'schema'use'a'variant'
of'a'data' structure'of' the' form'(S1DADS2)'where'S1' is'
the' sensory' input'before'action'A' is'applied'and'S2' is'
the'resulting'consequence.'They'can'be'all'regarded'as'
action' based,' future' oriented' representations' of' the'
����!( �$����' (cf.'Bickhard,' 2005).'Other' researchers,'
starting' from' fairly' different' assumptions' arrived' to'
similar' conclusions' regarding' these' properties' of'
mental' representations' (e.g.' Pezullo,' 2008c' Grush,'
2004).')
Third,' most' of' them' stressed' the' importance' of'

open=ended) learning' and' hence' the' importance' of'
modeling) the) inner) value) system' and' phenomena' like'
curiosity'or'epistemic)hunger.''
Fourth,' in' all' of' the' above' systems,' the'process'of'

development'seems' to'be'driven'predominantly'by' the'
environmental' input,' leaning' thus' towards' the'
empiricist' end' of' the' nativismDempiricism'
epistemological'specter.'The'knowledge)structures'that'
arise' in' this' way' are' unavoidably' a' deterministic'
outcome' of' the' agentDenvironment' interaction.' This'
precludes'any'creative'process'where,'say,'by'analogy,'
an'agent'would'extend'its'knowledge'from'one'domain'
to'another.'We'have'discussed' some'of' these' issues' in'
(Stojanov' et' al.' 2006c' Kulakov&Stojanov,'
forthcoming).' In' Piagetian' parlance' this' would' mean'
that' most' of' the' above' presented' models' account'
primarily'for'the'empirical)abstraction'and'neglect' the'
reflective)abstraction'which'is''crucial'for'development'
and' creativity.' Briefly,' by' empirical' abstraction' some'
quality' (e.g.' weight' or' color)' is' abstracted' from' an'
object.' ' On' the' other' hand,' reflective' abstraction' is'
about' reorganization' of' existing' schemas' and' their'
projection'on'a'higher'plane.'(see'Kitchener,'1983,'pp.'
61D65,' for' informative' discussion' of' empirical' and'
reflective'abstraction'as'well'as'Campbell'&'Bickhard,'
1993' discussion' on' the' knowing) levels).' So' far,' only'
limited' schema' manipulation' mechanisms' seem' to' be'
����� ��� �
�� ����(s' synthetic' items' or' 	����( �
metaDschemas).''
Finally'none'of'the'(so'far)'reviewed'models'tried'to'

tackle' the' effects' of'maturation' and' biological' growth''
on'the'cognitive'development.''
!
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Abstract

The principle of minimum relative entropy
is proposed as a general fundamental princi-
ple that could be used by the brain to do in-
ference and update beliefs about the world.
It originates from information and probability
theory, but we relate it it to the brain, to the
concept of surprise and to a minimum free-
energy principle that has already been pro-
posed for the brain. The measure of surprise
that is based on relative entropy (Bayesian
surprise) is compared with another definition
of surprise (Shannon surprise) that is used
by Friston for a minimum free-energy prin-
ciple. Theoretical and experimental justifi-
cations are given to propose to use Bayesian
surprise as a better and more natural defini-
tion of surprise. It can be used as a novel
way to quantify surprise or related concepts
in developmental robotics. This can then be
used in implementations of intrinsic motiva-
tions like curiosity to drive exploration, inter-
active learning and autonomous mental devel-
opment.

1. Introduction

The concept of intrinsic motivation is important in
developmental psychology because it seems necessary
for open-ended cognitive development. In the field of
developmental robotics one goal is to understand and
model these intrinsic motivations. It has been said
(Oudeyer et al., 2007) that the challenge is to opera-
tionalize and quantify the concepts behind words like
”surprise” (Ranasinghe and Shen, 2008) and ”nov-
elty” (Huang and Weng, 2002) which are important
to model and implement intrinsic motivations.

In this paper a definition and implementation of
surprise is suggested that is based on relative en-
tropy. First the principle of minimum relative en-
tropy is introduced by discussing the theoretical
foundations of a general universal method for infer-
ence. Then it is shown to be related to and that it
confirms a definition of surprise by Itti and Baldi
(Itti and Baldi, 2009) that they call Bayesian sur-
prise. After that the theory is compared with Fris-
ton’s (Friston, 2009) minimum free-energy principle

and another definition of surprise. In the conclusion
the advantages of relative entropy and opportunities
for the field of developmental robotics are discussed.

2. Theoretical foundations

It is possible to derive a general universal method for
inference on the basis of three axioms (Gi�n, 2008).
An important assumption is the principle of mini-
mal updating: beliefs should be updated only to the
extent required by the new information. This is in-
corporated by a locality axiom, and the other two
axioms are only used to require coordinate invari-
ance and consistency for independent subsystems.
By eliminative induction this singles out the loga-
rithmic relative entropy as the formula to minimize.
This way the Kullback-Leibler Divergence (KLD)
(Kullback and Leibler, 1951) has been derived as the
only correct and unique divergence to minimize.
Other forms of divergences and relative entropies in
the literature are excluded.

It can be seen as a confirmation of the Principle of
Minimum Discrimination Information (MDI) as pro-
posed by Kullback. It states that given new facts, a
new distribution should be chosen which is as close
to the original distribution as possible so that the
new data produces the smallest possible information
gain. This means the KLD can also be used to mea-
sure information gain. In another form it is called
the method of Maximum relative entropy, or Max-
imum Entropy (ME) (Gi�n, 2008). The only dif-
ference is a minus-sign. Note that this is not equal
to the MaxEnt method, which also has been called
Maximum Entropy. To avoid this possible confusion
and because we use the form of the KLD without the
minus-sign, we will call it the principle of minimum
relative entropy (PMRE).

It has been shown (Gi�n, 2008) that this prin-
ciple is capable of producing every aspect of or-
thodox Bayesian inference (which allows arbitrary
priors) and MaxEnt (which allows arbitrary con-
straints), and can also process both forms simulta-
neously, which Bayes and MaxEnt cannot do alone.

This principle was derived by only using mathe-
matics, but we propose that it could be a principle
that is used by the brain to adjust its beliefs about
the world and to do inference. Because energy e�-
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ciency is important for the brain, the axiom of mini-
mal updating makes this principle biologically more
plausible then many other algorithms.

3. Bayesian surprise

To further support the principle and to relate it to
the brain we now refer to experiments that have been
done. A definition of Bayesian surprise has been pro-
posed (Itti and Baldi, 2009) that is equal to the KLD
between the prior and posterior beliefs of the ob-
server. In experiments they showed that by calculat-
ing this they could predict with high precision where
humans would look. This formula and definition was
found to be more accurate then all other models they
compared it with, such as Shannon entropy, saliency
and several other measures.

In their derivation they picked the KLD as the
divergence to define Bayesian surprise by referring to
the work of Kullback. Although we agree it would
also have been possible to pick another divergence as
a measure, because the KLD is just one out of one
class of divergences called f-divergences. They didn’t
explicitly exclude all other possibilities. The benefit
of the derivation of the PMRE is that it uniquely
selects the KLD. So in this way the PMRE helps to
better select and confirm this definition of Bayesian
surprise.

4. The free-energy principle

In the field of neuroscience, the minimum free-energy
principle has been proposed (Friston, 2009) as a fun-
damental principle to explain many things about the
brain. Friston uses the minimization of Shannon
surprise as fundamental principle and as a starting
point. The principle of minimum free-energy is re-
lated to that, because mathematically free-energy
is always an upper bound to Shannon surprise.
Bayesian surprise is a measure between two distribu-
tions, like the prior and posterior beliefs. Shannon
surprise is di↵erent because it is only based on one
probability distribution.

Free-energy can be expressed as the sum of a KLD
and Shannon surprise. For perception the minimiza-
tion of free-energy is similar to the PMRE, because
the extra term with Shannon surprise has no influ-
ence on the solution. But when applying the mini-
mum free-energy principle to actions, as Friston pro-
poses, this extra term will influence the results, so
the two principles are not equivalent in all ways.

5. Conclusion

It has been shown that the PMRE has a very solid
theoretical foundation and that the principle of min-
imal updating makes it more biologically plausible
then many other techniques or algorithms. Much

of the impressive work by Friston can also be seen
as support for this principle because the principle of
minimum free-energy is similar in many ways.

The biggest di↵erence is the use of di↵erent def-
initions of surprise. Being aware of the experi-
ments by Itti and Baldi (Itti and Baldi, 2009) Fris-
ton stated: ”it remains an interesting challenge to
formally relate Bayesian surprise to the free-energy
bound on (Shannon) surprise.” (Friston, 2009) In
our approach we don’t have this problem or chal-
lenge because we only use Bayesian surprise as
the natural measure of surprise. An overview of
computational approaches for intrinsic motivations
(Oudeyer and Kaplan, 2007) shows many di↵erent
implementations and definitions, including ways to
quantify surprise, but relative entropy hasn’t been
used for that yet. We propose to use Bayesian sur-
prise to define and quantify surprise because it has a
very good theoretical foundation and because exper-
iments indicate that it is currently the best way to
model human surprise. This could be useful to model
and implement surprise and intrinsic motivations in
the field of developmental robotics.
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Abstract

This poster introduces the recently started
CASA MILA project, which aims to study
cross-cultural and social aspects of multi-
modal interactions aimed to establish joint at-
tention and their impact on language develop-
ment with infants and artificial agents. One of
the objectives of the study is to collect data on
the usage frequencies of three di↵erent types
of joint attention and feed these into a sim-
ulation of the Talking Heads experiment in
order to test mechanisms that would under-
lie the learning of word-meaning mappings.
The poster will present some empirical find-
ings from the pilot project that is currently
been carried out in Mozambique.

1. Introduction

One of the biggest problems humans face when learn-
ing a language is identifying the meaning of words.
The extent of this problem has been famously illus-
trated by (Quine, 1960), who sketched the situation
of an anthropologist studying a – to him – unknown
language. When a native speaker exclaims ‘Gavagai!’
at the moment a rabbit scurries by, the anthropolo-
gist notes that ‘gavagai’ means rabbit, but how can
he be sure? Gavagai, Quine argued, could mean an
infinite number of things, such as undetached rabbit
parts, dinner, animal with large ears or even a com-
pletely unrelated event such as it’s going to rain.

Humans, especially children, are notoriously good
at solving this problem. Various biases, constraints
and (social) mechanisms have been proposed trying
to explain how humans acquire word-meaning map-
pings. Examples include the whole object bias, shape
bias, taxonomic bias, mutual exclusivity, principle of
contrast, Theory of Mind and joint attention; for an
overview see, e.g., (Bloom, 2000). All these biases,
constraints and mechanisms serve to reduce the un-
certainty of a word’s meaning.

The recently started CASA MILA project aims
to study the e↵ect of joint attention on language

acquisition in di↵erent cultural societies and simu-
lated robots. In particular, the objective is to in-
vestigate how the usage-frequencies of various multi-
modal interactions (e.g., pointing gestures, gaze fol-
lowing, etc.) between infants and caregivers a↵ect
the speed of word learning. The multimodal inter-
actions, which the project focuses on, are used to
establish one of the three forms of joint attention
proposed in (Carpenter et al., 1998):

Sharing / checking attention is the first form
that emerges around the age of 9-10 months in a
child’s development and occurs when a caregiver
follows a child’s attention to an object, while both
are aware of sharing attention (the child looks
back and forth from object to the caregiver).

Following attention emerges second and happens
around 10.5 months when a child’s attention is
drawn to an object by the caregiver (e.g., through
eye-gaze following).

Directing attention emerges thirdly at the aver-
age age of 12.6 months when a child directs the
attention of the caregiver to an object.

Various studies have suggested that the onset of
these types of attention, as well as, the fre-
quency of joint attentional usage have an e↵ect
on the early vocabulary development of infants
(Carpenter et al., 1998, Mundy et al., 2007).

One approach to study the e↵ects of joint at-
tentional usage on language development is by us-
ing developmental robotics, realised either in phys-
ical systems or in simulations. A recent study that
used a simulation of Steels’ Talking Heads experi-
ment (Steels et al., 2002) has shown that di↵erences
in the use of the three joint attentional mechanisms
can lead to strong di↵erences in vocabulary develop-
ment, assuming a statistical language learning mech-
anism (Kwisthout et al., 2008). In this model the
word-meaning mappings are acquired through cross-
situational learning (Siskind, 1996), which is a sta-
tistical learning mechanism based on the co-variance
in the occurrences of words and meanings across sit-
uations (or learning contexts). In the model it is
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assumed that the three joint attentional mechanisms
have di↵erent ways to reduce the learning context
size. It was shown that, relatively speaking, check-
ing attention yielded the largest reduction, following
attention the second largest reduction and direct-
ing attention the smallest. Since cross-situational
learning works faster when the learning mechanisms
are smallest (Smith et al., 2006), the same ordering
was found for the speed of vocabulary development
(Kwisthout et al., 2008).

In this study, however, the frequencies by which
the di↵erent joint attentional mechanisms were
used was all or nothing. This is very unreal-
istic, because humans tend to use these mecha-
nisms in various frequencies that di↵er individually
(Mundy et al., 2007), and possibly cross-culturally
as well (Keller et al., 2005). In order to computa-
tionally verify the validity of the underlying lan-
guage learning mechanisms and the influence that
joint attention can have on language development,
it is desirable to predict the speed of vocabu-
lary development using empirically obtained data
on joint attentional usage and compare the out-
come with relating development with human children
(Vogt and de Boer, 2009).

The CASA MILA project aims to collect such em-
pirical data in three cultures: one urban and one
rural Changana speaking culture from Mozambique,
and a Dutch speaking culture. The study will involve
an observational study in which infants are video-
taped in a natural setting in their native environ-
ment. The purpose is to collect the frequency dis-
tributions with which multimodal interactions occur
with caregivers, siblings and others that lead to the
three joint attentional forms at various stages dur-
ing their development between the ages of 9 to 24
months. It is anticipated that there are di↵erences
between the three cultures regarding the frequencies
with which the di↵erent forms of joint attention are
used. The question remains whether such di↵erences
are also found in the speed of vocabulary develop-
ment. By closely monitoring their language develop-
ment, it will be possible to correlate the di↵erences
in joint attentional use with the development of joint
attention.

The empirically obtained frequency distribu-
tions will then be used as input to an adap-
tation of the computational model used in
(Kwisthout et al., 2008) that simulates the acquisi-
tion and evolution of language to investigate the ef-
fects that di↵erent distributions have on language
development. Such simulations are helpful to inves-
tigate whether the learning mechanism used in the
computer model predicts a similar development as
the empirical findings. If this is the case, then the
investigated learning mechanism is a likely candidate
for the mechanism used by humans. If not, the imple-

mented learning mechanism probably needs revision.
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