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Object learning through active exploration
Serena Ivaldi, Sao Mai Nguyen, Natalia Lyubova, Alain Droniou, Vincent Padois, David Filliat, Pierre-Yves

Oudeyer, Olivier Sigaud

Abstract—This paper addresses the problem of active object
learning by a humanoid child-like robot, using a developmental
approach. We propose a cognitive architecture where the visual
representation of the objects is built incrementally through
active exploration. We present the design guidelines of the
cognitive architecture, its main functionalities, and we outline
the cognitive process of the robot by showing how it learns to
recognize objects in a human-robot interaction scenario inspired
by social parenting. The robot actively explores the objects
through manipulation, driven by a combination of social guidance
and intrinsic motivation. Besides the robotics and engineering
achievements, our experiments replicate some observations about
the coupling of vision and manipulation in infants, particularly
how they focus on the most informative objects. We discuss the
further benefits of our architecture, particularly how it can be
improved and used to ground concepts.

Index Terms—developmental robotics, active exploration,
human-robot interaction

I. INTRODUCTION

THE connection between motor exploration and learning
object properties is a central question investigated by

researchers both in human development and in developmental
robotics [1], [2]. The coupling between perception and ma-
nipulation is evident during infants’ development of motor
abilities. The quality of manipulation is related to the learning
process [3]: the information they acquire about objects guides
their manual activities, while these activities provide them
with additional information about the object properties [4],
[5]. Infants carefully select their exploratory actions [6], [7]
and social cues shape the way they learn about objects since
their first year [8].

Researchers leverage these insights to make robots learn
objects and concepts through active exploration and social
interaction. Several factors have to be considered: for example,
the representation of objects and sensorimotor couplings in
a robotic-centric perspective [9], [10], [11], [12], the learn-
ing and exploration strategy [13], [14], and the way social
guidance from a human teacher or caregiver can be blended
with the aforementioned [15], [16]. The combination of these
factors reflects in the robot’s cognitive architecture. Although
literature focusing on one or more aspects is rich and diverse
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(see [17] for a survey), integrated solutions are rare; even rarer
are those where the robot builds its knowledge incrementally
within a developmental approach. For example, in [18] the
architecture is focused on interaction and emotions, while in
[19] on cooperation and shared plans execution. In [20], [21]
the architectures are based on high-level ontologies. Overall,
those architectures are limited in two respects: first, they make
considerable assumptions on the prior knowledge of the robot;
second, they often segregate the development of the perceptual
levels from that of the cognitive levels.

Fig. 1. The humanoid iCub in the experimental contexts: autonomous and
socially-guided exploration.

In contrast, we believe that development plays an essential
role for the realization of the global cognitive process, and
that it should guide the design of the cognitive architecture
of robots at many levels, from elementary vision and motor
control to decision-making processes. The robot should ground
its knowledge on low level multi-modal sensory information
(visual, auditory and proprioceptive), and build it incremen-
tally through experience. This idea has been put forward by
the MACSi project1.

In this paper, we present the design guidelines of the
MACSi cognitive architecture, its main functionalities and
the synergy of perceptual, motor and learning abilities. More
focused descriptions of some parts of the architecture have
been previously published by the authors: [22], [23] introduced
the perceptual-motor coupling and the human-robot interaction
functions, [24] the engagement system, [12] the vision tracking
system, [25] the intrinsic motivation system. We describe
the cognitive process of the robot by showing how it learns
to recognize objects in a human-robot interaction scenario
inspired by social parenting.

We report experiments where the iCub platform interacts
with a human caregiver to learn to recognize objects. As
an infant would do, our child robot actively explores its
environment (Fig. 1), combining social guidance from a human
“teacher” and intrinsic motivation [26], [27]. This combined
strategy allows the robot to learn the properties of objects by

1http://macsi.isir.upmc.fr
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actively choosing the type of manipulation and concentrating
its efforts on the most difficult (or the most informative)
objects.

The paper is organized as follows. Section II outlines the
cognitive architecture, particularly the motor and perceptual
systems. Section III-A shows that manipulation has a direct
impact on the way objects are perceived by the robot, jus-
tifying why the robot needs to have an efficient exploration
strategy. Section III-B describes how social guidance and
intrinsic motivation are combined for the active exploration
for an object recognition task. In Section IV, we discuss the
implications of the experimental results. In Section V we
provide further insights on the perspectives of our work.

II. COGNITIVE ARCHITECTURE

Sensorimotor activities facilitate the emergence of intelli-
gence during the interaction of a cognitive agent with the
environment [28]. In robotics, the implementation of the
cognitive process requires the edification of several perceptual,
learning and motor modules that are typically integrated and
executed concurrently on the robotic platform. The orches-
tration of such modules is defined within the design of the
robot’s cognitive architecture. As anticipated, the design of our
architecture takes inspiration from developmental psychology
and particularly from studies on infants development, which
offers interesting lessons for developing embodied intelligent
agents. Not only should the robot be able to develop its
prospection and action space incrementally and autonomously,
but it should be capable of operating in a social environment,
profiting of humans to improve its knowledge.

A. “Six lessons from infant development”[29]

In [29], Smith & Gasser defined six fundamental properties
that embodied intelligent agents should have and develop: mul-
timodality, incremental development, physical interaction with
the environment, exploration, social guidance and symbolic
language acquisition. Our cognitive architecture meets the first
five requirements and paves the way for the sixth.

• Multimodality: We rely on multiple overlapping sensory
sources, e.g. auditory (microphone arrays), visual (cam-
eras in the robot’s eyes), somatosensory (proprioceptive,
kinesthetic - joints encoders, inertial and force/torque
sensors); as it is frequently done in robotics, we also
include extrinsic sensory sources, e.g. external RGB-
D cameras. The richness of perceptual information is
a hallmark of humans, and a distinctive feature of the
humanoid platform we use, iCub [30].

• Incremental development: Infants may have pre-wired
circuits [31] but they are very premature in terms of
knowledge and sensorimotor capabilities at their begin-
ning. These capabilities mature during their development
[32] as the result of a continuous and incremental learning
process. To replicate such skills in our robot, the design
of our cognitive architecture entails several autonomous
and incremental learning processes at different levels.
For example, we demonstrated how the robot can learn
autonomously its visuo-motor representations in simple

visual servoing tasks [23], and to recognize objects from
observation and interaction [12], [33].

• Physical interaction with the environment: Intelligence
requires the interplay between the human baby with his
surrounding, i.e. people and objects. Crucially, interaction
is essentially physical: babies exploit the physical support
of their environment, manipulate objects, use physical
contact as a means for learning from humans. Contact and
touch are also the primary form of communication that
a baby has with his mother and the dominant modality
of objects’ exploration (e.g. through mouthing) during
the first months of life [34]. To make the robot interact
physically with the environment and with people, in an
autonomous or very little supervised way, the compliance
of the platform must be suitably controlled. Put differ-
ently, the robot should be “safe”. This requirement is met
by the motor controllers developed in our architecture that
exploit the sensory feedback to control the robot’s forces
during both intentional and accidental interactions [35],
[36], [37].

• Exploration: Children explore their environment some-
times acting in a seemingly random and playful way. This
non goal-directed exploration gives them opportunities to
discover new problems and solutions. Open and inven-
tive exploration in robotics can also unveil new action
possibilities [27], [38], [39], [40]. In our architecture, we
provide several tools to drive exploration, to combine it
with intrinsic motivation and social guidance [22], [25].
Not only our motor primitives are safe so the robot
can explore on its own (or minimally supervised by the
human), but they are sufficiently numerous and assorted
so the robot can perform simple and complex objects
manipulations.

• Social guidance: Human babies can learn autonomously,
but they learn the most during social interactions. In
our system, the robot is able to follow and engage with
the active caregiver [24]; the human in the loop can
tutor the robot and influence the way it interacts with
its environment.

• Symbol and language acquisition: Language is a shared
and symbolic communication system, grounded on sen-
sorimotor and social processes. In our architecture, we
provide the base for grounding intermediate-level or
high(er)-level concepts [41], for example the vision sys-
tem categorizes and recognizes objects that the human
interacting with the robot can label with their name.
But we do not integrate or exploit language acquisition
mechanisms yet.

The cognitive architecture is shown in Fig. 2: it consists
of an integrated system orchestrating cognitive, perceptive,
learning and control modules. All modules are tightly inter-
twined, and their numerous and different couplings enable the
emergence of visuo-motor representations and cognitive loops.
From the perceptual point of view, different sensory sources
are used: external sensors and internal sensors embodied on
the robotic platform. In the first group, we have microphones
sound arrays, used to detect the direction of sound, and
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Details of SGIM-ACTS are reported in Appendix A, but
more can be found in [25]. In Section III-B, we describe
how SGIM-ACTS is used for an object recognition task in
cooperation with a human teacher. Remarkably, the effective
implementation of such mechanisms to address elementary
challenges requires a tight coupling between the visual, cog-
nitive, motor and learning modules, which is a novel feature
of our architecture.

C. Action

Perceptive and cognitive modules are interfaced to the robot
through an action/motor interface, which controls speech,
facial expressions and upper-body movements. We define a
set of actions that can be evoked by specifying their type π,
e.g. take, grasp, and a variable list of parameters θ, e.g. the
object name, its location, the type of grasp, etc. The k-th action
πk is generally defined as:

πk(x, θk) , (1)

where x ∈ Rn is the initial state of the robot at the beginning
of the movement, and θ ∈ Rp is a vector defining the param-
eters characterizing the movement. The primitive definition
entails both actions/skills which are learnt by demonstra-
tions [42] or pre-defined parameterized motions. Interestingly,
π can be an elementary action, such as an open-loop gaze
reflex, a closed-loop reaching, but also a complex action (i.e.
a combination/chain of multiple elementary actions), such as

πk(x0, θk) = (πi(x0, θk,i) → πj(x1, θk,j) → . . .

. . . → πh(xN−1, θk,h)) ,
(2)

where πk is a chain of N actions, which are applied to the ini-
tial state x0, and make the system state evolve into x1, . . . , xN .
The elementary actions, with their basic parameters are:

• speak (θ: speech text)

• look (θ: (x, y, z), i.e. Cartesian coordinates of the point
to fixate)

• grasp (θ: selected hand, grasp type, i.e. fingers joints
intermediate and final configurations)

• reach (θ: selected arm, x, y, z, i.e. Cartesian coordinates
of the point to reach with the end-effector, o, i.e. orien-
tation of the end-effector when approaching the point)

More complex actions (without specifying their numerous
parameters, but just describing the sequence2) are:

• take (reach and grasp)

• lift (upward movement)

• rotate (take, lift, reach the table with a rotated orientation,
release - open the hand)

• push (reach the target from one side, push by moving the
hand horizontally, then withdraw the hand)

• put-on (take, lift, reach the target from the top and
release)

• throw (take, lift, release)

• observe (take, lift, move and rotate the hand several times,
to observe an in-hand object)

2More details can be found in the online documentation of the code:
http://chronos.isir.upmc.fr/∼ivaldi/macsi/doc/group actionsServer.html.

• give (take, lift, reach the partner and release)

If unpredictable events3 occur during the execution of an ac-
tion, for example an unsuccessful grasp or a potentially harm-
ful contact with the environment, one or more autonomous
reflexes are triggered. These reflexes are pre-coded sequences
of actions that may interrupt or change the execution of the
current action or task. Overall, our action interface is quite rich
in terms of repertoire of actions, because besides elementary
actions (such as in [19]) we provide the robot with more
complex actions for a wider exploration capability. It also
has coupling with the learning modules, so as to provide
reproduction of trajectories learnt by demonstration, such as
in [52]. Differently from [53], we do not integrate language
processing for letting the human define on-line new sequences
of actions, because this matter is outside the scope of our
project.

D. Visual perception

The perceptual system of the robot combines several sensory
sources in order to detect the caregivers and perceive its
environment. The primary source for object detection is a
RGB-D sensor placed over the area where the interaction with
objects and caregivers takes place.

The object learning and recognition module has been
designed with the constraints of developmental robotics in
mind. It uses minimal prior knowledge of the environment:
in particular it is able to incrementally learn robot, caregiver
hands and object appearance during interaction with caregivers
and objects without complementary supervision. The system
has been described in details in [12], [54]. A short overview
is given here to complement the architecture presentation.

All information about the visual scene is incrementally
acquired as illustrated in Fig. 3. The main processing steps
include the detection of physical entities in the visual space
as proto-objects, learning their appearance, and categorizing
them into objects, robot parts or human parts.

At the first stage of our system the visual scene is seg-
mented into proto-objects [55] that correspond to units of
visual attention defined from coherent motion and appearance.
Assuming that the visual attention of the robot is mostly
attracted by motion, proto-object detection starts from optical
flow estimation, while ignoring the regions of the scene
that are far away according to the constraints of the robot’s
workspace. Then, the Shi and Tomasi tracker [56] is used
to extract features inside moving regions and to group them
based on their relative motion and distance. Each cluster of
coherently moving points is associated with one proto-object
and its contour is defined according to the variation of depth.
Each proto-object is therefore tracked across frames and finally
identified as an already known or a new entity.

Each proto-object appearance is incrementally analyzed by
extracting low-level visual features and grouping them into a
hierarchical representation. As a basis of the feature hierarchy

3These events are usually captured by the sensors embedded in the robot.
For example, we threshold the external forces at the end-effectors, estimated
thanks to the proximal force/torque sensors [35], to detect potentially harmful
contacts with the table.
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the coupling of learning, vision and manipulation.

In Section III-A we show that some objects are more
informative than others in terms of visual appearance, and that
the robot needs to manipulate actively the object to gather
all its views. Manipulation causes changes in the way the
objects appear to the robot. Fig. 6 shows the outcome of
two different sequences of actions applied to a yellow car
and a blue train: some in-hand rotations and a side-push. The
rotating action is more interesting and informative, since it
causes the object to unveil hidden parts: more views can be
then associated to this object, and this should help the robot to
build a better model of the object. This is quite obvious for a
human teacher providing the robot with new objects to learn,
and commanding the robot to manipulate the objects: to boost
the robot learning, a “good” teacher will always ask the robot
to perform the maximally informative actions (i.e. the actions
causing more changes in the objects’ appearance, unveiling the
objects’ physical properties or their affordances). Similarly,
the robot autonomous exploration should be guided by the
will to gather more information about the objects, just like
infants spend more time manipulating objects they are more
willing to learn [3], [68]. In the robot, this curiosity process
is implemented through the intrinsic motivation system [25].

In Section III-B we show how the intrinsic motivation
system can be used to explore objects in a human-robot
“parenting” scenario, to effectively choose how to manipulate
the objects and which objects need to be explored the most.
We also show how this exploratory mechanism can cope
with “good” and “bad” teachers (i.e. naive partners) in the
object recognition task. Incidentally, our approach has much
in common with experimental observations about the way
infants learn to recognize objects through feature tracking
across actions and social cues [8].

A. Exploring objects through manipulation

When the robot exploration is driven by its intrinsic moti-
vation, the curiosity mechanism should focus on the objects
that are the most informative and difficult to recognize. To
check this intuition, we performed a set of experiments where
the robot interacted repeatedly with several different objects
performing the very same actions. The goal was to highlight
the objects that frequently changed their visual representation
as a consequence of the action that was exerted on them.
We took 149 different objects, shown in Fig. 8. The objects
are either children toys, belonging to the set of “iCub’s toys”
(colorful objects that can be easily manipulated, grasped), or
arbitrary items of the laboratory. Every object was pushed
30 times across the robot’s workspace. Some examples of
pre/post images (i.e. images of the object before and after the
action occurs) are shown in Fig. 7. In some cases (7a), though
pushing the object produced a change in its pose on the table,

9It must be noted that the number of objects chosen for this study is not
a limitation per se. The vision processing system learns from scratch and
in an incremental fashion. It keeps recognizing previously shown entities,
identifying new ones, adding more views to the entities, etc. (see [12] for
more insights on the vocabulary growth and the vision performances). Since
its knowledge is built incrementally, more objects could be easily added to
the study.

it did not substantially change the object’s appearance to the
visual system (for example it simply slid on the table surface,
thus the main entity view attributed by the vision system did
not change). In others (7b), pushing made the objects fall
on their side, revealing a new or simply a different view
that was added to the object model. Between each pre/post

image, we measured the displacement of the object in a robot-
centered reference frame and the change in the main (i.e. the
most probable) view of the object. The results are shown in
Fig. 9. As the median displacement in the z−axis is negligible,
it is variable for the x− and y− axis. Intuitively, objects
that have a cylindrical or spherical shape are able to “roll”,
thus move longer than others on the y− axis (which is the
axis perpendicular to the pushing performed by the robot).
The emergence of the “rolling” property is discussed later in
Section IV. Right now, we focus on the view-change. From the
histograms (9b), we can see that the amount of views collected
for each object is variable, and basically depends on the object
physical and aesthetic properties. For example, the red bear
had few different views, and there was basically no change
in its appearance produced by the action (<5%). Conversely,
objects like the train, the chicken and the patchwork of plastic
cubes changed very much their appearance, and on average a
push provoked changes in their appearance (>60%). Objects
like the gray dog or the bottle had many views, but the push
did not frequently alter their visual features (20-30%).

Overall, these results confirm two important observations.
First, objects that are more complex and faceted require more
exploration than those uniform in shape and color. Second,
manipulation can change the visual appearance of the objects
to the vision system, and this exciting outcome depends on
the action and the object properties.

Consequently, an autonomous agent/robot that has no a
priori knowledge of the surrounding objects, must necessarily
interact with them to learn their properties. Intuitively the more
the objects are complex, the more time it will spend on them,
doing manipulation which can bring more information.

B. Exploration by social guidance and intrinsic motivation

As we discussed in Section II-A, the cognitive robot should
engage in active exploration, driven by both social guidance
[69], [70] and its own curiosity. Fig. 10 illustrates the human-
robot interaction scenario and introduces the active learning
strategy exploration. The robot’s task is to learn to recognize
different objects. At each decision step the exploration algo-
rithm determines the triple (object, action, actor), that is the
object to explore, the action to perform on it, and the actor
who is going to do the action. The robot can decide to do the
action by itself, or it can ask the human to do it.10 In the first
case, the robot can perform one of the action primitives in
its repertoire (Section II-C), for example a side push (which
consists in approaching the object on its side, pushing and
withdrawing the hand from the object) or a throwing (which

10In both cases, the robot communicates its intent to the human through
its speech synthesis system. For example it may say “Now I push the bear”
or “Show me the bear”. Some samples of communication can be found in
[22], whereas videos giving a taste of the experiments can be seen in http:
//youtu.be/cN9eBaUpqWE and http://youtu.be/J7qfdWNe4uk.
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(a) The first three plots (from the top) show the median value and the first
and third quartiles of the x-,y- and z-axis displacement of the objects after a
push-left. The fourth plot shows the changes of view.
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(b) Effect of the push-left action on the perception of objects.
Top: the view changes due to the action, i.e. the quota of
actions that produced a change in the main view of the object.
Bottom: the total number of views collected for each object.

Fig. 9. The effect of the push-left action on the 14 different objects ( Fig. 8).
We collected 30 samples (i.e. results of 30 different pushes) for each object.
We measured the displacement of the object before and after the action (pre
and post, cf. Fig. 7) in the x-, y- and z-axis in a robot referenced coordinates
frame. The median displacement in the z-axis is evidently negligible. The
histograms show the effect of the action in terms of changes in the perception
of the object.

experiment, where the intrinsic motivation system copes with
the two types of teachers in an object recognition task.

We hereby present experimental results showing how the
intrinsic motivation system incorporates social teaching to
autonomously learn to recognize different objects. The human-
robot scenario is presented in Fig. 10: the human cooperates
with the robot by showing and manipulating some objects to
learn, upon the robot request, while the robot manipulates
the objects autonomously. We chose five objects among the
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Fig. 10. The active exploration strategy in the human-robot interaction
scenario: at each decision step, the exploration algorithm determines the triple
(object, action, actor), that is the object to explore, the action to perform
on it, and the actor who is going to do the action (either robot or human).
The choice of the triple can be done by the human caregiver if the robot is
completely passive as in [71], or by the intrinsic motivation system if the robot
is active. Top: when the exploration is active, the robot decides to manipulate
the object, and can choose for example between two different actions: pushing
or throwing the object. A pushing sequence consists in reaching the object on
one side then pushing it in a direction parallel to the y-axis of the robot (e.g.
towards the left with the right arm). A throwing sequence consists in reaching
the object from the top, lifting it then opening the hand at once to release the
object. The object drop is assimilated to a throwing, but of course it is more
controlled and reasonably keeps the fallen object in the robot’s workspace.
As objects fall, their appearance changes quite unpredictably. Bottom: during
active exploration, the robot can decide to ask the human to show a new
object, or to manipulate the current one. In the first case, the human simply
intervenes to change the object on the table. In the second case, the human can
act on the object. If the human is a “good teacher”, he can change radically
the appearance of the object, for example by flipping it or putting it on one
side: this action is beneficial for the robot, because the robot can have a new
experience of the object, take more views, etc. If the human is a “bad teacher”,
he simply moves the object without caring to change its appearance to the
robot.

ones of Fig. 8, namely the gray dog-like toy, the blue/violet
ball, the red bear, the yellow car and the patchwork of
yellow-red-green plastic cubes. With this choice, we mixed
items that are easy and difficult to recognize because of their
color and shape properties. Fig. 16b shows different views
of the chosen objects. For example, the gray dog is easy
to recognize because its color and shape are quite different
from the others; the yellow car and the blue/violet ball are
easier to distinguish in term of colors, however depending
on their current orientation and pose on the table, their top
view from the RGB-D camera may appear different in terms
of color features or dimensions11; the patchwork of colored
plastic cubes is the trickiest object to recognize, because its
side views change the perceived dimension of the object (see
Fig. 16b), and because of the different colors of the four
cubes, the features of the global object can be confused with
the ones of the car and the bear. In summary, we expect

11From a top view the ball may appear as a blue or as a violet circle, or as
a mixed blue/violet circle. The yellow car appears as a big yellow rectangle,
but with different sizes depending on the way the object lies on the table.
In particular, it may be showing or not some characteristic features like the
wheels or the toy decorations. A sample of the possible views of the car is
shown in Fig. 16b.
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toys like car and plastic cubes to arouse the interest of the
cognitive agent: because of their rich “perceptive affordance”,
interaction can reveal their numerous views. An experiment
consists of a sequence of interactions with the human and
the objects: the number of interactions and their type change
depending on the exploration strategy, the learning progress
and the type of teacher.12 At each decision step, the curiosity
system determines the triple (object, action, actor), that is the
object to explore and one among the following action/actor
possibilities:

• the robot pushes or lift/throws the object

• the human manipulates/shows the object

The teacher first labels all the objects. 13 Since the robot asks
the teacher to switch the objects, it is aware at each step of
the object it is currently manipulating, so it can collect views
for the specified object label. Views are collected when the
objects are immobile on the table, hence before (pre) and after
(post) the actions: this is intentionally done to avoid collecting
views of the moving entity, which would be demanded to
future experiments. The vision processing system, of course,
is never interrupted or inactive, because it needs to keep
identifying entities and tracking their movement in the scene,
estimate their location, etc. At the action completion (post),
when the object is generally immobile on the table (notably,
in a different pose), the vision learning system is triggered
and views are collected again. The robot tests which object
label/category it associates with the new object image, com-
putes a confidence measure on its capability to recognize the
object, and sends the evaluation results to the curiosity system.
Depending on the progress, the curiosity system decides the
next action to trigger. The learning progress is evaluated on the
classification accuracy of the system on an image database (see
Appendix B), made up of 64 images of each object in different
positions and orientations, as shown in Fig. 16. Details of
the learning algorithm, called SGIM-ACTS, are reported in
Appendix A. Experiments were performed with two different
types of teacher: a “good” teacher that we call “unbiased”,
which manipulates the objects at each time the robot asks,
simply translating the object or showing a different side of
it; and a “bad” teacher that we call “biased”, which does not
manipulate the objects when asked (i.e. it does not alter their
appearance) and when asked to show a new object, always
shows the same side. To have a fair comparison about the
effectiveness of the curiosity system, we compared its learning
progress with the one produced by a random exploration
strategy, where the object and action to perform are picked
up randomly.

We present and compare one exemplifying experiment for
each of the four aforementioned conditions. Fig. 11 shows

12On average, one experiment takes between 60 and 90 minutes.
13Since speech recognition is not integrated in this experiment, we manually

enter the labels of the objects, i.e. their names, into the curiosity module. This
step is specific to this experiment, and is necessary to ensure that the robot
knows that during this session only those five objects will be available. We
remind that since the robot has limited mobility, it has to ask the human to
show and put the objects on the table each time. To ease the communication
with the human and simplify the experiment focusing on the exploration
strategy, we chose to give the objects’ names to the robot at the beginning of
the experiment.

the number of images of the evaluation database which are
correctly recognized over time. Fig. 12 detail the learning
progress and the decision of the exploration strategies over
time: each graph shows the progress in the f-measure (i.e.
the harmonic mean of precision and recall [72]) for the five
objects during time, while the bottom rows represent with a
color code the chosen object and action at each decision time.
The three actions are labeled push, lift, show.

As shown in Fig. 11, the progress in recognition is better
with the curiosity-driven exploration than with random explo-
ration, for both teachers. At the end of the experiments, the
SGIM-ACTS learner is able to correctly recognize the objects
in 57 over 64 images, against 50 in the case of the random
learner.

Not surprisingly, Fig. 12 shows that, when exploration is
random, the object is changed more frequently, whereas when
exploration is autonomous the robot focuses on objects for
longer periods. In the “random” case the robot does not focus
on any particular object: since it explores equally all objects,
the recognition performance at the end of the experiment
is worse, because the “difficult” objects (such as the cubes
- green line) are not sufficiently explored. Conversely, the
SGIM-ACTS learner focuses more on the difficult objects
such as the cubes, especially when its competence progress
increases. Fig. 12c and 12d clearly illustrate this mechanism:
the red bear (cyan line) is easily recognized, hence the robot
does not ask again to interact with the object once it is learnt;
conversely, the cubes (green line) are difficult to recognize,
since their appearance changes substantially depending on the
action (a frontal view consists of four cubes, while a lateral
view consists of two cubes only, and depending on the side it
could be yellow or red/green), hence the robot focuses more
on them. For both teachers, the robot spent 54% and 51% of
its time learning about cubes when exploration was curiosity-
driven. This proves that intrinsic motivation makes the robot
focus on the most difficult objects to learn.

The curiosity mechanism is also necessary to compensate
for good or bad teaching actions: this is a crucial point,
because it allows the robot to take advantage of the coaching
of experienced researchers but also collaborate with naive
subjects. With the “good” teacher (unbiased) the robot decided
to autonomously do 50.85% push, 23.73% take/lift/throw, and
asked the human to do 25.42% manipulate/show. With the
“bad” teacher (biased) the robot did autonomously 22.97%
push, 40.54% take/lift/throw, and asked the human to do
36.49% manipulate/show.

Notably, with the “bad” teacher the robot takes and throws
more the objects (41% vs 24%) to compensate with its active
manipulation the lack of informative input from the teacher.

A “good” teacher can thus have a catalyzing effect: the
learning process is 25% faster with an unbiased teacher than
with the biased one, and the robot can focus on manipulat-
ing more the complex objects. But, thanks to the curiosity
mechanism, the teaching component is not fundamental to
determine the final outcome of the learning process: as shown
in Fig. 11, the curiosity-driven exploration allows the robot to
learn efficiently all the objects with both teachers.
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Fig. 11. SGIM-ACTS vs Random: recognition performance, i.e. the number of
images of the evaluation database correctly recognized by the two exploration
strategies with two different behaviors of the teacher (see text).

IV. DISCUSSION

The experimental results of Section III highlight two im-
portant observations that we discuss hereinafter.

A. Learning relates to manipulation

The influence of motor activity in learning about object
representations and properties has been widely investigated in
psychology, especially since Gibson’s arguments that infants
discover the affordances of the objects through motor activity
[6], [73]. Oakes and Baumgartner [3] showed that the quality
of infants’ manipulation is related to the way they learn
about object properties. Particularly, they showed that the
more infants want to learn about an object, the more time
they manipulate and touch the object. These observations find
correspondences in our experiment: the more the robot wants
to learn about an object, the more the object is complex or
informative, the more time it decides to manipulate the object
(see Section III-B). Moreover, the robot chose privileged
“informative” actions yielding the more possible changes in
the appearance of the object, like pushing or throwing, to cope
with different types of social partners. This puts forward two
interesting points. First, the combination of social guidance
and intrinsic motivation is a promising approach for building
robots capable of learning from and in cooperation with
naive subjects (typically, non-researchers, non-roboticists who
have no idea about how to leverage their learning process).
Second, object’s properties and affordances can emerge from
the interaction of the robot with the object. The experiments
of Section III were focused on objects recognition, so we
looked at the object’s representation before and after an action
affects the status of the object. However, the observation
of effects is a necessary step towards the learning of more
complicated properties of the objects, such as affordances.
Fig. 13 reports the median displacement of the objects pushed
by the robot during the experiments of Section III-A. A simple
classification of the effect defined as the y−axis displacement

can provide information about the object’s structure. In this
case, the presence of a main axis in the object’s shape can
help the robot to generalize and transfer the acquired “rollable”
property to other objects of similar shape. These ideas are at
the base of research and experiments on the acquisition and
exploitation of objects’ affordances [74], [75], [76]; moreover,
they could be easily integrated with symbol and language
grounding [77]. Such experiments are out of the scope of this
paper, but they are one of the natural follow-up to our work.

B. The observation of effects due to action in a spatial context

Section III-B presented our approach for the observation of
the visual effect of actions performed on objects by a cognitive
agent. This approach is grounded on the way the robot
builds its perceptual representation of the objects, which was
described in Section II-D. As shown in Fig. 3, the processing
of perceptual information is based on a layered architecture,
which extracts visual features from low-level sensory data
(vision, proprioception) and elaborates them to determine the
objects in the scene. Objects are then represented in a robot-
centric reference frame, so that the robot can use their spatial
information for planning motions and interacting with the
objects. This robot-centric representation is convenient for
manipulating the objects, however it may not be the most
convenient to study the effect of the actions on the objects or
the objects’ affordances. As discussed in [78], when perception
relies on static images, spatial context information is necessary
to help the cognitive agents to observe and make inferences.
For example, if the context is the one depicted in Fig. 14, the
effect of the action is a relative displacement between the two
objects. This being the goal of the action, reasoning should
occur in a non-robot-centric reference frame but rather in a
frame related to the context of the problem. In that case, the
same cognitive process could be used not only to identify the
effect of robot’s action on the objects (which is easy because
the robot knows which action it is doing and to which object),
but also to infer which is the best action-object couple that
produce the desired effect (the relative displacement). For
analogous arguments about planning in the perceptual space
using affordances we refer to [79] for a survey.

C. Multimodal hierarchical representations for cognition

The cognitive elements described in Section II are grounded
on a multimodal hierarchical representation of the robot state
and environment through its sensors 14. As illustrated in Fig. 3,
our vision processing system has a hierarchical structure in
the way images are elaborated so as to provide the final
information about the object, its identity, its position in the
robot’s frame etc. The introduction of motor information
makes the spaces larger, but as shown in Section II-D, it
enables enriching the object’s representation with categories
(human body, manipulable object, robot body), which are in
this case the product of a sensorimotor coupling.

In literature, it is still debated which structures should be
used to represent sensorimotor couplings and promote the

14The concept evokes the sensory ego-sphere [63], however our represen-
tation is structurally different.
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the camera, the iCub computes the likelihood for each already
known views, and returns the two highest likelihood measures
p1, p2, as well as the labels b1, b2 of the objects associated with
the views, and the number n1, n2 of known views for each of
the labels. The label bg of the currently manipulated object is
known to robot, as it is tough by the teacher in a preliminary
phase. The robot estimates its competence at distinguishing
bg from other objects, with the dissimilarity of likelihood
measures between the 1st object associated and the 2nd object
associated, and by estimating its gain of information about the
object by collecting new views. The competence is defined as

γ(bg) =n1 × p1 + c1 if bg = b1 = b2

n1 × p1/(1 + p2) + c1 if bg = b1, bg %= b2

n2 × p2/(1 + p1) + c1 if bg %= b1, bg = b2

c1 if bg %= b1, bg %= b2

where c1 is a constant, set to -1 in our experiment.
Our learner improves the estimation L of M to maximize

I =
∑

a P (a)γ(a), both by self-exploring A and B spaces
by generating new perception samples through manipulation
of the objects and by asking for help to a caregiver, who
handles the objects to the robot. When an object is placed
on the table, an image a ∈ A of an object b ∈ B is
retrieved at each step. SGIM-ACTS learns by episodes during
which it actively chooses both an object b ∈ B to learn
to recognize and a learning strategy σ between: pushing the
object, taking and dropping the object or asking the caregiver
to manipulate the object. For each object b it has decided
to explore, it also decides the strategy σ which maximizes
its “competence progress” or “interest”, defined as the local
competence progress, over a sliding time window of δ for
an object b with strategy σ at cost κ(σ). If the competence
measured for object b with strategy σ constitute the list
R(b, σ) = {γ1, ...γN}:

interest(b, σ) =
1

κ(σ)

∣

∣

∣

∣

∣

∣





N−
δ

2
∑

j=N−δ

γj



−





N
∑

j=N−
δ

2

γj





∣

∣

∣

∣

∣

∣

δ

This strategy enables the learner to generate new samples
a in subspaces of A. The SGIM-ACTS learner explores
preferentially objects where it makes progress the fastest. More
details of the algorithm and its implementation can be found
in [25].

APPENDIX B
DATABASE FOR EVALUATION OF CURIOSITY

PERFORMANCES

We evaluate the progress in objects’ recognition by com-
puting a performance measure over an evaluation database
(Fig. 16). It must be noticed that the evaluation of the
learning progress on the database is not used directly by the
curiosity system to guide the exploration (see details in [103]),
but is mostly used to visualize the learning curves of the
experiments. The database consists of 64 images acquired by
the RGB-D camera before the learning process takes place. In

this preparation phase, the human caregiver showed all the five
objects (multi-colored cubes, blue-violet sphere, red bear, gray
dog, yellow car) under several and different views (Fig. 16b).
It must be remarked that the whole image taken by the RGB-D
camera is retained for the evaluation (Fig. 16a).

(a) Evaluation database - (60 out of 64 images)

(b) Aggregation of the objects’ views in the evaluation database

Fig. 16. The database of objects’ views used by the intrinsic motivation
system to evaluate the progress in object recognition. It consists of 64 random
images of the objects from different points of view (a), which are conveniently
regrouped in (b).
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[84] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
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