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Abstract—We present a probabilistic framework unifying two

important families of exploration mechanisms recently shown to

be efficient to learn complex non-linear redundant sensorimotor

mappings. These two explorations mechanisms are: 1) goal bab-

bling, 2) active learning driven by the maximization of empirically

measured learning progress. We show how this generic frame-

work allows to model several recent algorithmic architectures for

exploration. Then, we propose a particular implementation using

Gaussian Mixture Models, which at the same time provides an

original empirical measure of the competence progress. Finally,

we perform computer simulations on two simulated setups: the

control of the end effector of a 7-DoF arm and the control of the

formants produced by an articulatory synthesizer.

I. INTRODUCTION

The learning of sensorimotor tasks, for example reaching
objects with the hand or controlling the shape of a vocal tract
to produce particular sounds, involves the learning of complex
sensorimotor mappings. This latter generally requires to build
a model of the relationships between parts of the sensorimotor
space. For example, one might need to predict the positions
of the hand knowing the joint configurations, or to control the
shape the vocal tract to produce the sound of particular words.

Let us introduce the problem more formally. A learning
agent interacts with a surrounding environment through motor
commands M and sensory perceptions S. We call f : M → S
the unknown function defining the physical properties of the
environment, such that when the agent produces a motor
command m ∈ M , it then perceives s ∈ S1. Classical
robotic problems are e.g. the prediction of the sensory effect
of an intended motor command through a forward model
f̃ : M → S, or the control of the motor system to reach
sensory goals through an inverse model ˜f−1 : S → M .
The agent has to learn such models by collecting (m, s) pairs
through its interaction with the environment, i.e. by producing
m ∈ M and observing s = f(m). These learning processes
are often difficult for several reasons:

• the agent has to deal with uncertainties both in the
environment and in its own sensorimotor loop;

• M and S can be highly dimensional, such that random
sampling in M to collect (m, s) pairs can be a long
and fastidious process;

1M and S can also represent higher level motor and sensory primitives
(e.g. dynamic movement primitives [1])

• f can be strongly non-linear, such that the learning of
f̃ from experience is not trivial;

• f can be redundant (many M to one S), such that the
learning of ˜f−1 is an ill-posed problem (f−1 does not
exist, or cannot be directly recovered from f ).

When a learning process faces these issues, random motor
exploration (or motor babbling) in M is not a realist explo-
ration strategy to collect (m, s) pairs. Due to high dimension-
ality, data are precious whereas, due to non-linearity and/or
redundancy, data are not equally useful to learn an adequate
forward or inverse model.

Two important families of exploration mechanisms recently
shown to be efficient to learn complex non-linear redundant
sensorimotor mappings. The first one concerns the space in
which the learning agent chooses points to explore, what we
will call the choice space. It was shown in previous models
that learning redundant inverse models could be achieved more
efficiently if exploration was driven by goal babbling (choice
space: S), triggering reaching, rather than direct motor bab-
bling (choice space: M ) [2], [3]. Goal babbling is especially
efficient to learn highly redundant mappings (e.g. the inverse
kinematics of a high dimensional arm). At each time step,
the agent chooses a goal sg in the sensory space S (e.g.
uniformly), uses the current knowledge of an inverse model
to infer a motor command m ∈ M to reach sg , observes the
corresponding consequence s = f(m) and update its inverse
model according to the newly collected (m, s) pair. This
exploration strategy allows the agent to cover the goal space
more efficiently, avoiding to waist time in redundant parts of
the sensorimotor space (e.g. executing many motor commands
that actually reach the same goal). The second principle comes
from the field of active learning, where exploration strategies
are conceived as an optimization process. Samples in the input
space (M in our sensorimotor framework) are collected in
order to minimize a given property of the learning process, e.g.
the uncertainty [4] or the prediction error [5] of the model. This
allows the agent to focus on parts of the sensorimotor space
in which exploration is supposed to improve the quality of the
model.

Combining both principles, recent works grounded in
developmental psychology has been interested by defining
empiric measures of interest in the motor or sensory spaces.
Computational studies have shown the importance of devel-



opmental mechanisms guiding exploration and learning in
high-dimensional M and S spaces and with highly redundant
and non-linear f [6], [3]. Among these guiding mechanisms,
intrinsic motivations, generating spontaneous exploration in
humans [7], [8], have been transposed in curiosity-driven
learning machines [9], [10], [11] and robots [6], [3] and
shown to yield highly efficient learning of inverse models in
high-dimensional redundant sensorimotor spaces [3]. Efficient
versions of such mechanisms are based on the active choice of
learning experiments that maximize learning progress, for e.g.
improvement of predictions or of competences to reach goals
[9], [6]. This automatically drives the system to explore and
learn first easy skills, and then explore skills of progressively
increasing complexity. Such intrinsically motivated exploration
was also shown to generate automatically behavioural and cog-
nitive developmental structures sharing interesting similarities
with infant development [6], [12], [13], [14]. This approach is
grounded in psychological theories of intrinsic motivations [7],
[15], explores several fundamental questions about curiosity-
driven open-ended learning in robots [6], and allows to gen-
erate some novel hypotheses for the explanation of infant
development, regarding behavioural [13], cognitive [12] and
brain circuitry [16] issues.

In the next section we describe several exploration strate-
gies proposed in the literature to efficiently learn complex
sensorimotor mappings. Then Section III offers an integration
of these strategies into a unified probabilistic framework.
In Section IV we implement this general formal framework
using Gaussian mixture models. In particular, we suggest
an original implementation of the empirical measure of the
competence progress. Section V validates our approach on two
developmental robotics experiments. The first one qualitatively
shows how coherent developmental trajectories can emerge
from the model in a setup involving a 7-DoF simulated arm.
The second one uses an articulatory synthesizer (a model of
the human vocal tract able to compute auditory features from
articulatory commands), and shows quantitative performance
comparisons of various exploration strategies on a control task.

II. EXPLORATION STRATEGIES

Systematic comparisons of various exploration strategies
have been performed [3]. These strategies differ in the way the
agent iteratively collects (m, s) pairs to learn forward and/or
inverse models (comparing random vs. competence progress
based exploration, in either motor M or sensory S choice
spaces). These strategies are summarized below (the original
name of the corresponding algorithm appears in parenthesis).

• Random motor exploration (ACTUATOR-

RANDOM): at each time step, the agent randomly
chooses an articulatory command m ∈ M (choice
space: M ), produces it, observes s = f(m) and
updates its sensorimotor model according to this new
experience (m, s).

• Random goal exploration (SAGG-RANDOM): at
each time step, the agent randomly chooses a goal
sg ∈ S (choice space: S) and tries to reach it by
producing m ∈ M using an inverse model ˜f−1 learned
from previous experience. It observes the correspond-
ing sensory consequence s = f(m) and updates its

sensorimotor model according to this new experience
(m, s).

• Active motor exploration (ACTUATOR-RIAC): at
each time step, the agent chooses a motor command
m by maximizing an interest value in M based on
an empirical measure of the competence progress in
prediction in its recent experience. The agent uses a
forward model f̃ learned from its past experience to
make a prediction sp ∈ S for the motor command
m. It produces m and observe s = f(m). The
agent updates its sensorimotor model according to
the new experience (m, s). A measure of competence
is computed from the distance between sp and s,
which is used to update the interest model in the
neighborhood of m.

• Active goal exploration (SAGG-RIAC): at each time
step, the agent chooses a goal sg by maximizing an
interest value in S based on an empirical measure of
the competence progress to reach goals in its recent
experience. It tries to reach sg by producing m ∈ M
using a learned inverse model ˜f−1. It observes the cor-
responding sensory consequence s ∈ S and updates its
sensorimotor model according to this new experience
(m, s). A measure of competence is computed from
the distance between sg and s, which is used to update
the interest model in the neighborhood of sg .

In the two active strategies, the measure of interest was
obtained by recursively splitting the choice space (M in
ACTUATOR-RIAC, S in SAGG-RIAC) into sub-regions dur-
ing the agent life. Each region maintains its own empirical
measure of competence progress from its competence history
in a relative time window. The competence is defined as the
opposite of the distance between sp and s in the active motor
strategy, between sg and s in the active goal one.

In a seek of unification, we can extract the following
general principles from these strategies.

• Whatever the strategy used, the agent has to sample
points in a given space. This space is M for the first
and the third strategy, S for the second and the fourth.
We call it the choice space X .

• In all but the first strategy, the agent has to make an in-
ference from the choice space X to its “complement”
in M × S (which is S if X = M and M if X = S).
We call this latter the inference space Y .

• In the active exploration strategies, the agent has to
maintain an empirical measure of interest in the choice
space X . In the other strategies, the agent makes a
random sampling in X .

Table I thus suggests to classify these four strategies
along two dimensions. The first one corresponds to the choice
space X , which is here either M (motor strategies) or S
(goal strategies). The second dimension is the kind of interest
measure used by this agent at each time step to choose a
point in its choice space, either uniform leading to a random
sampling in X (random strategies), or based on empirical
measurements, here the competence progress in prediction or
control (active strategies).



TABLE I. Exploration strategies classification.

choice
space X

Interest measure

Uniform sampling competence-progress
M Random motor exploration

(ACTUATOR-RANDOM)
Active motor exploration
(ACTUATOR-RIAC)

S Random goal exploration
(SAGG-RANDOM)

Active goal exploration
(SAGG-RIAC)

III. PROBABILISTIC MODELING

The general principles we extracted in the previous section
make the probabilistic framework appear as a good candidate
to provide a general model which encompasses all the sug-
gested exploration strategies.

The notations and principles of this formalization are
inspired by [17], [18]. Upper case A denotes a probabilistic
variable, defined by its continuous, possibly multidimensional
and bounded domain D(A). The conjunction of two variables
A ∧ B can be defined as a new variable C with domain
D(A)×D(B). Lower case a will denote a particular value of
the domain D(A). p(A | ω) is the probability distribution over
A knowing some preliminary knowledge ω (e.g. the parametric
form of the distribution, a learning set . . . ). Practically, ω
will serve as a model identifier, allowing to define different
distributions of the same variable, and we will often omit it in
the text although it will be useful in the equations. p(A B | ω)
is the probability distribution over A∧B. p(A | [B = b] ω) is
the conditional distribution over A knowing a particular value
b of another variable B (also noted p(A | b ω) when there is
no ambiguity on the variable B). For simplicity, we will often
confound a variable and its domain, saying for example “the

probability distribution over the space A”.

Considering that we know the joint probability distribution
over the whole sensorimotor space, p(M S | ωSM ), Bayesian
inference provides the way to compute every conditional
distribution over M ∧ S. In particular, we can compute the
conditional distribution over Y knowing a particular value x of
X , as long as X and Y correspond to two complementary sub-
domains of M ∧S (i.e. they are disjoint and X∧Y = M ∧S).
Thus, the prediction of sp ∈ S from m ∈ M in the active
motor exploration strategy, or the control of m ∈ M to reach
sg ∈ S in the active or random goal exploration strategies,
correspond to the probability distributions p(S | M ωSM ) and
P (M | S ωSM ), respectively. More generally, whatever the
choice and inference spaces X and Y , as long as they are
disjoint and that X ∧ Y = M ∧ S, Bayesian inference allows
to compute p(Y | X ωSM ).

Such a probabilistic modeling is also able to express the
interest model, that we will call ωI , such that the agent draws
points in the choice space X according to the distribution
p(X | ωI). In the random motor and goal exploration strate-
gies, this distribution is uniform, whereas it is a monotonically
increasing function of the empirical interest measure in the
case of the active exploration strategies. We will provide more
details about the way to iteratively compute p(M S | ωSM )
and p(X | ωI) from the experience of the agent in the next
section.

Given this probabilistic framework, Algorithm 1 describes
our generic exploration algorithm.

Algorithm 1 Generic exploration algorithm
1: set choice space X
2: while true do

3: x ∼ p(X | ωI)
4: y ∼ p(Y | x ωSM )
5: m = M ((x, y))
6: s = exec(m)
7: update(ωSM , (m, s))
8: update(ωI , (x, y,m, s))
9: end while

Line 1 defines the choice space of the exploration strategy.
For example X is set to M for the motor strategies and to S for
the goal strategies described in Section II, but the formalism
can also deal with any part of M ∧ S as the choice space.
Line 3, the agent draws a point x in the choice space X
according to the current state of its interest model ωI , through
the probability distribution p(X | ωI) encoding the current
interest over X . This distribution is uniform in the case of
the random strategies and related to the competence progress
in prediction or control in the active strategies of Section II.
Line 4, the agent draws a point y in the inference space Y
(remember that Y is such that X ∧ Y = M ∧ S) according to
the distribution p(Y | x ωSM ), using Bayesian inference on
the joint distribution p(M S | ωMS). If X = M , and therefore
Y = S, this corresponds to a prediction tasks p(S | [M = x]);
if X = S, and therefore Y = M , this corresponds to a control
task p(M | [S = x]). Line 5, the agent extracts the motor part
m of (x, y), noted M ((x, y)), i.e. x if X = M , y if X = S.
Line 6, the agent produces m and observe s = exec(m), i.e.
s = f(m) with possible sensorimotor constraints and noises.
Line 7 the agent updates its sensorimotor model according to
its new experience (m, s). Line 8 the agent updates its interest
model according to the choice and inference (x, y) it made
and its new experience (m, s).

In this framework, we are able to more formally express
each algorithm presented in Section II. The random motor
strategy (ACTUATOR-RANDOM) is the simpler case where
the choice space is X = M and the interest model of line 3
is set to a uniform distribution over X . Inference in line 4 is
here useless because motor extraction (line 5) will return the
actual choice x and that there is no need to update the interest
model in line 8. The active motor strategy (ACTUATOR-
RIAC) differs from the previous one by the interest model
of line 3 which favors regions of X (= M ) maximizing the
competence progress in prediction. This latter is computed
at the update step of line 8 using the history of previous
competences, defined as the opposite differences between the
prediction y ∈ Y computed on line 4 (with Y = S) and the
actual realization s ∈ S of line 6. The random goal strategy
(SAGG-RANDOM) is the case where the interest model is
uniform and the choice space is S, implying that the inference
corresponds to a control task to reach x ∈ X by producing
y ∈ Y (with X = S and therefore Y = M ). Finally, the
active goal strategy (SAGG-RIAC) differs from the previous
one by the interest model which favors regions of X (= S)
maximizing the competence progress in control. This latter is
computed in the same way that for ACTUATOR-RANDOM,
except that the opposite difference is here between the chosen
goal x ∈ X and the actual realization s ∈ S (with X = S).



IV. IMPLEMENTATION WITH GAUSSIAN MIXTURE
MODELS

In the present paper, we only provide the principles of
our implementation of the sensorimotor p(M S | ωSM )
and interest p(X | ωI) distributions, and leave its detailed
description to a further paper. Both the sensorimotor and
the interest distributions involve learning of Gaussian mixture
models (GMM) using the Expectation-Maximization (EM)
algorithm [19]. The values of the parameters we will use in
the experiments of the next section appear in parenthesis.

p(M S | ωSM ) involves KSM (=28) components (i.e. it
corresponds to a weighted sum of KSM Gaussian distribu-
tions). It is learnt using an online version of EM proposed
by [20] where incoming data are considered in lots in an
incremental manner. Each update corresponds to line 7 of Al-
gorithm 1 but is executed once each sm step (=400) iterations
of Algorithm 1. The ωSM model is thus refined incrementally
during the agent life, updating it each time sm step new
(m, s) pairs are collected. Moreover, we adapted this online
version of EM to introduce a learning rate parameter α (from
0.1 to 0.01 in a logarithmic decreasing manner), allowing to
set the relative weight of the new learning data with respect
to the old ones.

p(X | ωI) is a uniform distribution in the random strategies,
whereas it has to reflect an interest measure in the active
strategies, which is here related to an empirical measure of
the competence progress. For this aim, we compute a measure
of competence for each 4-tuple (x, y,m, s) collected at each
iteration of Algorithm 1. We define the competence c of
each iteration as c = e−�(x,y)−(m,s)�2 , i.e. the exponential of
the opposite of the Euclidean distance between the concate-
nation of the choice and infer points (x, y) and the actual
realization (m, s) (remember that X ∧ Y = M ∧ S). As
m = M ((x, y)) (line 5 of Algorithm 1), we actually have
c = e−�S((x,y))−s�2 , where S((x, y)) is the sensory part of
(x, y). Thus, each episode is associated with a tuple (t, x, c),
where t is the (normalized) time index of the iteration. We
then consider the competence progress as a correlation between
time and competence (the higher the correlation, the higher
the competence progress). For this aim, we learn the joint
distribution of this data p(T X C | ωTXC) (where T and
C are the mono-dimensional variables defining the time and
competence domains, with values in R+) using a classical
version of EM on a GMM of KI (=12) components using
the last sm step ∗ im step tuples (t, x, c), on the time
window corresponding to the last im step (=12) updates of the
sensorimotor model. After convergence of the EM algorithm,
we bias the result by setting the a priori distributions of the
model ωTXC (i.e. the weight of each Gaussian) to the resulting
value of the covariance between t and c (normalized to sum up
to 1 and considering only the positive correlations). Finally, the
interest model p(X | ωI) corresponds to the Bayesian inference
p(X | [T = t+] ωTXC), where t+ is the time index of the
future update of the sensorimotor model (e.g. if the t values
of the learning set are {1, . . . , n}, then t+ = n + 1). This
allows line 3 of Algorithm 1 to sample values in regions of
X which maximize the expected competence progress at the
next update of the sensorimotor model.

Fig. 1. The 7-DoF simulated arm. Yellow (or light gray) area shows
the reachable space of the end effector in the 2-D plan. It corresponds to
the position of the end effector for 100,000 motor configurations uniformly
sampled in the 7-D motor space. Red (or dark gray) lines show 10 particular
arm configurations randomly chosen in this set.

V. RESULTS

This section presents two developmental robotics experi-
ment to show (A) how the implementation of the competence
progress measure as a correlation between time and compe-
tence can lead to coherent developmental trajectories and (B)
how our probabilistic framework allows to compare various
exploration strategies in a unified way.

A. Experiment 1: developmental trajectories on a 7-DoF arm

This experiment involves a motor space M corresponding
to the 7 joint angles of a simulated arm constrained on a 2-D
plan. Each segment is 2/3 shorter than the previous one and
the total length is 1. The sensory space S corresponds to the
2-D Cartesian coordinates on the plan of the end effector. Joint
angles are constrained in the range [−π/3, . . . ,π/3]. Figure 1
illustrates this sensorimotor space. We observe that random
motor configurations favors positions of the end effector “in
front of the agent” (high value on the abscissa) due to the
redundancy of the sensorimotor mapping in this area.

With this experiment, we want to qualitatively evaluate
our original measure of competence progress as a correlation
between time and competence. Figure 2 shows the evolution of
the reached and choice points in a simulation implementing an
active goal exploration strategy (bottom-right cell of Table I,
i.e. X = S and p(X | ωI) reflects the competence progress as
defined in Section IV). We observe that the system explores
the positions that the end effector is able to reach in a
developmental manner. In the first two plots (top-left and top-
middle), the agent sets sensory goals corresponding to “easy
configurations” in front of him (similar to those displayed in
Figure 1). Then, it progressively sets goals in part of the space
harder to reach, i.e. behind him (but still continues to explore
easier parts, a possible reason being a tendency of our adapted
version of the EM algorithm to forget previously learned data).

B. Experiment 2: performance comparison on a vocal control

task

This experiment involves the articulatory synthesizer of the
DIVA model described in [21]. This synthesizer is based on the
Maeda’s model [22], using 13 articulatory parameters: 10 from
a principal component analysis (PCA) performed on sagittal



Fig. 2. Visualization of the reached points and interest distribution evolution
over time in the active goal strategy on the 7-DoF arm experiment. Each plot
represents the state of the reached points and the interest distribution every
100 updates of the interest model (from left to right, then top to bottom).
White points are the points reached by the agent since the beginning of the
simulation, corresponding to line 6 of Algorithm 1 (e.g. the top-right plot
shows the reached points from the start to the 300th update). The color map
is a visualization of the interest distribution in the corresponding time window
(e.g. the top-right plot shows the distribution in the time window from the
200th to the 300th update). It is obtained by computing an histogram of the
goals drawn on line 3 of Algorithm 1 with 100 bins per dimension in S (hence
10,000 bins) and applying a 5-bins wide Gaussian filter.

contours of images of the vocal tract of a human speaker,
plus glottal pressure, voicing and pitch. It is then able to
compute the formants of the signal (among other auditory and
somato-sensory features). In the present study, we only use
the 7 first parameters of the PCA and the two first formants,
approximately normalized in the range [ − 1, 1]. We refer
to [14] for more details on the Maeda model (also used in
a developmental robotics setup) and to [21] for more details
on the particular synthesizer of the DIVA model. Figure 3
explains the general principles of speech production.

We ran the implementation of the algorithm described
in the previous sections with different choice spaces
and interest distributions corresponding to the four strate-
gies ACTUATOR-RANDOM, ACTUATOR-RIAC, SAGG-
RANDOM and SAGG-RIAC described in Section II. We
evaluate the efficiency of the obtained sensorimotor models to
achieve a control task, i.e. to reach a test set of goals uniformly
distributed in the reachable auditory space.

Figure 4 shows the performance results of the four ex-
ploration strategies on a control task during the life time of
learning agents. We observe that the strategies with S as
the choice space (random and active goals) are significantly
more efficient that those with M (random and active motor),
i.e. both convergence speed (say around 100 updates) and
generalization at the end of the simulation (500 updates) are
better. Moreover, both convergence speed and generalization
are better for the active than for the random strategies. These
results are similar (though less significant) to those obtained in
previous experiments [3] in other sensorimotor spaces (e.g. a
arm reaching points on a plan as in Experiment 1), and we refer
to the corresponding paper for a thorough analysis of these
results. This shows that our unified probabilistic framework is
suitable to encompasse all these exploration strategies.

Fig. 3. Speech production general principles. The vocal fold vibration by the
lung air flow provides a source signal: a complex sound wave with fundamental
frequency F0. According to the vocal tract shape, acting as a resonator, the
harmonics of the source fundamental frequency are selectively amplified or
faded. The local maxima of the resulting spectrum are called the formants,
ordered from the lower to the higher frequency. They belong to the major
features of speech perception.

Fig. 4. Performance comparison of the four exploration strategies. X axis:
number of update of the sensorimotor model. Y axis: Mean error distance on a
control task where an agent has to reach 30 test points uniformly distributed in
the reachable area of S. For each evaluation point sg ∈ S, the agent infers 10
motor commands in M from the distribution p(M | sg ωSM ), where ωSM is
the state of the sensorimotor model at the corresponding time step (number of
update on the X axis). The error of an agent at a time step is the mean distance
between the sensory points actually reached by the 10 motor commands and
the evaluation point sg . Each curve plots the mean and standard deviation of
the error for 10 independent simulations with different random seeds, for each
of the four exploration strategies described in the previous sections.

Fig. 5. State of the sensorimotor model at the end of the simulations for
the four exploration strategies (from left to right: ACTUATOR-RANDOM,
ACTUATOR-RIAC, SAGG-RANDOM and SAGG-RIAC). Auditory param-
eters are the two first formants computed by the articulatory synthesizer.
Yellow (or grey) area is the auditory area reached by the agent at the end of
the simulation. Ellipses represents the Gaussians of the sensorimotor GMM
p(M S | ωSM ) projected on S (1 standard deviation).

Figure 5 shows the state of the sensorimotor model ωSM

projected in the sensory space S at the end of one simulation
for each of the four exploration strategies. We observe that the



position of the Gaussians are relatively disorganized when M
(two first plots) is the choice space, whereas some structure
appears when it is S (two last plots). Self-organization seems
to spontaneously appear in the choice space where points
are sampled from the interest model (either uniformly or
actively). When this latter is S, this provides a sensorimotor
model allowing to better control the vocal tract to reach
auditory goals. Another observation is that the auditory space
is covered more uniformly in the active than in the random goal
exploration strategy. The reason is that the random strategies
more often choose goals outside the reachable space, thus
favoring reaching at the borders of the sensory space S. To
summarize, using S as the choice space is more efficient than
using M because self-organization in S is adequate to achieve
a control task, and the active goal strategy is more efficient
than the random goal one because it allows to focus on the
reachable part of S (and perhaps to set goals of increasing
difficulties, as suggested in the arm experiment).

VI. CONCLUSION

We have integrated in this paper two important exploration
principles of developmental robotics (exploration in the sen-
sory space and active learning based on an empirical measure
of the competence progress) into an integrated probabilistic
framework able to express various exploration strategies in
a compact and unified manner. We then suggest an original
implementation of the underlying algorithm using GMMs
where the competence progress is measured as a statistical
correlation between time and competence. Finally, we showed
that this modeling can be applied to various sensorimotor
spaces (articulatory-auditory and bracchio-visual), that it is
able to match performance comparison results obtained in
previous works and have interesting properties in terms of self-
organization and developmental trajectories.

Further works should rely the approach to other tentatives
of exploration strategy unification (e.g. [23], [24]). We also
want to study the effect of an online adaptation of the choice
space, taking advantage of the fact that our formalism does not
restrict it to be either M or S. For example, we could study
how the agent iteratively adapts which part of the sensorimotor
space it is interested in at a given time of its development,
favoring exploration in sensorimotor dimensions which display
higher measures of competence progress. Finally, we want to
extend the implementation to learn how to control sequences
of motor commands.
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