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Abstract. In this paper we address the problem of learning a policy
from demonstration. Assuming that the policy to be learned is the opti-
mal policy for an underlying MDP, we propose a novel way of leveraging
the underlying MDP structure in a kernel-based approach. Our proposed
approach rests on the insight that the MDP structure can be encapsu-
lated into an adequate state-space metric. In particular we show that,
using MDP metrics, we are able to cast the problem of learning from
demonstration as a classi�cation problem and attain similar generaliza-
tion performance as methods based on inverse reinforcement learning at
a much lower online computational cost. Our method is also able to at-
tain superior generalization than other supervised learning methods that
fail to consider the MDP structure.

1 Introduction

In this paper we address the problem of learning a policy from demonstration.
This problem has garnered particular interest in recent years, as the ability of
non-technical users to program complex systems to perform customized tasks
rests heavily on fast and e�cient solutions to this particular problem. The lit-
erature on this topic is too extensive to review here, and we refer to [3, 8] for
reviews.

We formalize the problem of learning a policy from demonstration as a stan-
dard supervised learning problem: given a demonstration of some target policy
consisting of (possibly perturbed) samples thereof, we must recover the target
policy from the observed samples. These samples consist of the actions that
the agent (learner) should take at speci�c situations; the learning agent must
generalize the observed actions to situations never observed before.

Several works follow a similar approach to the problem of learning from
demonstration. Examples go back to the pioneer work of Pomerleau [13], in
which an arti�cial neural network is used to have a vehicle learn how to steer



from sample steering motions by a human operator. Other related approaches
include [4, 17].

There are several interesting aspects in the supervised learning approach. It
is a very general formulation of the problem of learning a policy from demonstra-
tion, making it possible to leverage the rich body of work on supervised learning.
On the other hand, when envisioning real world scenarios � e.g., when a human
user must teach an agent some target task � it is seldom practical to have the
user provide demonstrations with thousands of samples. This implies that (i)
the datasets used will typically be small (say, a couple hundred samples) and
amenable to fast learning; and (ii) in large problems, the algorithm must exhibit
good generalization ability, and hence all available information on the structure
of the problem should be exploited.

Our contribution in this paper addresses the latter issue. Unlike other super-
vised learning approaches to learning a policy from demonstration, we assume
that the target policy is the optimal policy for some underlying Markov decision

process (MDP), whose dynamics are known. We thus propose the use of this
underlying MDP structure to improve the generalization ability of our learn-
ing algorithm. In this sense, our approach is also close to inverse reinforcement

learning [12, 14] and related approaches (see, e.g., [1] and references therein).

Like IRL-based approaches, our method takes advantage of the underlying
MDP structure but avoids one bottleneck associated with the former. In fact,
IRL-based methods are typically iterative and require solving one di�erent MDP
per iteration, which renders these methods computationally expensive in tasks
involving large domains. We instead resort to MDP metrics [5,22] that encapsu-
late the structure of the MDP and provide a seamless way to leverage it within a
supervised learning approach. While many supervised learning methods depend
critically on the de�nition of features that capture useful similarities between
elements in input-space, MDP metrics naturally achieve this in the class of prob-
lems considered in this paper, by identifying two states as �similar� if policies
can safely be generalized from one to the other.3

The remainder of the paper is organized as follows. Section 2 formalizes the
problem of learning a policy from demonstration. Section 3 reviews IRL-based
and supervised learning approaches to this problem. We introduce our method
in Section 4 and illustrate its application in Section 5. Section 6 concludes.

2 Formalizing Learning from Demonstration

We now formalize the problem of learning a policy from demonstration. Through-
out the paper, a policy is understood as a mapping π : X → ∆(A), where X
is some �nite set of states, A is a �nite set of actions and ∆(A) is the set of

3 This is particularly evident in scenarios in which the input space is discrete. In fact,
problems in continuous domains typically assume the input space as some subset of
Rp, for which natural metrics exist. The same does not occur in discrete domains,
where the notion of two states being close is less immediate.



all probability distributions over A. A policy π thus maps each state x ∈ X to
a distribution over actions. Intuitively, it can be thought of as a decision rule
that an agent/decision-maker can follow to choose the actions in each state. All
throughout the paper we focus on problems with �nite X , typical in scenarios of
routing, man-machine interfaces or robot control using high-level skills/options.

A demonstration is a set D of state-action pairs, D = {(xi, ai), i = 1, . . . , N},
where the states are independently randomly sampled from X , and the corre-
sponding actions are sampled according to the target policy πtarget. Formally,
denoting by Uni(·) the uniform probability distribution over X , we have that the
samples (xi, ai), i = 1, . . . , N are i.i.d. according to

P [(X,A) = (x, a)] = Uni(x)πtarget(x, a),

where (X,A) = (x, a) denotes the event that the pair (x, a) is sampled.4

We assume that the target policy πtarget used to generate the demonstration
is either the optimal policy for an underlying Markov decision process (MDP) or
a perturbation thereof. A MDP is herein represented as a tuple (X ,A,P, r, γ),
where X and A are as de�ned above, P(x, a, y) denotes the probability of moving
to state y after choosing action a at state x and r(x) is the reward that the agent
receives upon reaching state x. The constant γ is a discount factor. We recall
that, given an MDPM = (X ,A,P, r, γ), the value associated with a policy π in
state x ∈ X is given by

V π(x) = Eπ

[ ∞∑
t=0

γtr(Xt) | X0 = x

]
,

where Xt denotes the state of the MDP at time instant t and the expectation
Eπ [·] is taken with respect to the distribution over trajectories of the chain
induced by the policy π. The optimal policy for an MDP is thus the policy π∗

that veri�es, for all x ∈ X and all π, V π
∗
(x) ≥ V π(x). The problem of learning a

policy from demonstration can thus be roughly described as that of determining
a policy that best approximates the target policy, πtarget, in some sense.

In our �nite action setting, we can treat each action a ∈ A as a class label,
and a policy is essentially a discriminant function that assigns class labels to the
states in X . In other words, the policy π̂ computed by our learning algorithm
can be interpreted as classi�er that assigns each label a ∈ A to a state x ∈ X
according to the probabilities P [A = a | X = x] = π̂(x, a). We henceforth use
the designations �classi�er� and �policy� interchangeably. We de�ne the 0-1 loss

function ` : A × A → {0, 1} as `(a, â) = 1 − δ(a, â), where δ(·, ·) is such that
δ(a, â) = 1 if a = â and 0 otherwise. Our algorithm must then compute the

4 There may be applications in which the above representation may not be the most
adequate (e.g., in some robotic applications). However, this discussion is out of the
scope of the paper and we instead refer to [3].



classi�er π̂ that minimizes the misclassi�cation rate,

E =
1

N

N∑
i=1

Eπ̂ [`(ai, a)] =
1

N

N∑
i=1

∑
a∈A

`(ai, a)π̂(xi, a),

where (xi, ai) is the ith sample in the dataset D. To this purpose, we resort to
a kernel-based learning algorithm from the literature [9].

Our contribution arises from considering a kernel obtained from a metric
over X that is induced by the MDP structure. This MDP metric provides a
natural way of �injecting� the MDP structure in the learning algorithm, leading
to an improved performance when compared to other metrics that ignore the
MDP. To put the work of this paper in context, the following section reviews
the main ideas behind IRL-based approaches to the problem of learning a policy
from demonstration. Also, it shows the supervised learning method used in our
experiments to assess the usefulness of MDP metrics in the setting of this paper.

3 IRL and Supervised Learning Approaches

In this section we review some background material on (supervised) learning
from demonstration and IRL. As will become apparent from our discussion,
the underlying MDP used in IRL approaches is a rich structure that, if used
adequately, leads to a signi�cant improvement in estimating the target policy.
This observation constitutes the main motivation for the ideas contributed in
the paper. The section concludes with a brief revision of MDP metrics.

3.1 Inverse Reinforcement Learning

To describe the main ideas behind IRL-based approaches to the problem of
learning a policy from demonstration, we introduce some additional concepts
and notation on Markov decision processes. Given a policy π and an MDPM =
(X ,A,P, r, γ), we have

V π(x) = r(x) + γ
∑
y∈X

Pπ(x, y)V
π(y)

where Pπ(x, y) =
∑
a∈A π(x, a)P(x, a, y). For the particular case of the optimal

policy π∗,

V ∗(x) = r(x) + max
a∈A

γ
∑
y∈X

P(x, a, y)V ∗(y).

The Q-function associated with policy π is de�ned as

Qπ(x, a) = r(x) + γ
∑
y∈X

P(x, a, y)V π(y)



Inverse reinforcement learning (IRL) deals with the inverse problem to that
of an MDP. Solving an IRL problem consists in recovering the reward function

r given the optimal policy π∗ for an MDP. In other words, given a policy π and
the model (X ,A,P, γ), we must determine a reward function r∗ such that π is
an optimal policy for the MDP (X ,A,P, r∗, γ).

IRL was �rst formalized in the seminal paper by Ng and Russel [12]. Among
other things, this paper characterizes the solution space associated with a target
policy πtarget as being the set of rewards r verifying(

Pπ − Pa
)(
I− γPπ

)−1
r � 0, (1)

where we have denoted by r the column vector with xth component given by
r(x). One interesting aspect of the condition (1) is that, although trivially met by
some reward functions, it still provides a restriction on the reward space arising
solely from considering the structure of the MDP. In other words, by considering
the structure of the MDP it is possible to restrict the rewards that are actually
compatible with the provided policy.

The sample-based approach to the problem of learning from demonstration
considered in this paper, however, is closest to [10,14]. In these works, the demon-
stration provided to the algorithm consists in perturbed samples from the opti-
mal policy associated with the target reward function. Speci�cally, in [14], the
distribution from which the samples are obtained is used as the likelihood func-

tion in a Bayesian setting. The paper then estimates the posterior distribution
P [r | D] using a variant of the MCMC algorithm. In [10], on the other hand, the
authors adopt a gradient approach to recover the reward function that minimizes
the empirical mean squared error with respect to the target policy.

For future reference, we review the latter method in more detail. Roughly
speaking, the working assumption in [10] is that there is one reward function,
rtarget, that the agent must estimate. Denoting the corresponding optimal Q-
function by Q∗target, the paper assumes the demonstrator will choose an action
a ∈ A in state x ∈ X with probability

P [A = a | X = x, rtarget] =
eηQ

∗
target(x,a)∑

b∈A e
ηQ∗

target(x,b)
, (2)

where η is a non-negative constant, henceforth designated as con�dence parame-

ter. Now given a demonstration D = {(xi, ai), i = 1, . . . , N} obtained according
to the distribution in (2), the algorithm proceeds by estimating the reward func-
tion r minimizing

E =
1

N

∑
i

(
π̃(xi, ai)− π̂r(xi, ai)

)2
,

where π̃(xi, ai) is the empirical frequency of action ai in state xi and π̂r is the
optimal policy for the MDP (X ,A,P, r, γ). Minimization is achieved by (natural)



gradient descent, with respect to the parameters of π̂r � the corresponding reward
function r. The method thus proceeds by successively updating the reward

r(k+1) = r(k) − αt∇̃rE(r(k)),

where ∇̃rE(r(k)) denotes the natural gradient of E with respect to r computed
at r(k).

We conclude by noting that the computation of the natural gradient ∇̃rE(r(k))
at each iteration k requires solving the corresponding MDP (X ,A,P, r(k), γ).
This need to solve an MDP at each iteration makes this method computation-
ally expensive for large problems.

3.2 Supervised Learning

There is a signi�cant volume of work on supervised learning approaches to the
problem of learning a policy from demonstration. That literature is far too exten-
sive to be reviewed here, and we refer to [3,8] for more detailed accounts. Instead,
we provide a brief overview of several common traits of all these approaches, and
then describe the particular learning algorithm used in Section 5.

First of all, supervised learning approaches typically do not su�er from the
inconvenience of having to solve multiple MDPs. This is an appealing property
of this class of methods that allows tackling larger problems with signi�cant
savings in terms of computational e�ort. Moreover, we can leverage the rich
body of work on supervised learning to the problem of estimating a policy from
a demonstration.

However, even when the target policy is assumed optimal for some MDP, most
supervised learning approaches to the problem of learning a policy from demon-
stration eventually ignore the underlying MDP structure in the learning process
(see, for example, [4]). This means that such supervised learning algorithms do
not actually require any particular knowledge of the underlying structure of the
problem to function. Of course, when such information is available, it can pro-
vide valuable information for the learning algorithm and the learning algorithm
should be able to accommodate such information.

In Section 4 we propose a principled and seamless approach to leverage the
MDP structure in a kernel-based learning algorithm. Our proposed approach
rests on the insight that the MDP structure can be encapsulated into an input-

space metric that the learning algorithm can use to generalize along the (implicit)
MDP structure. We propose using a metric that �projects� the structure of the
MDP in such a way that the target policy in two states that are �close� is likely
to be similar. This notion is illustrated in the example of Fig. 1.

We postpone to Section 4 the detailed description of how to encapsulate the
MDP structure in the input-space metric and conclude this section by describing
the learning algorithm used in our experiments.

Going back to the formulation in Section 2, we are interested in computing
a classi�er π̂ (a distribution over the set of class labels � in this case, the action
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Fig. 1. Transition diagram for a simple MDP
with 3 states, 3 actions and deterministic tran-
sitions. Even if the reward for this MDP is un-
known, the demonstration of an optimal action in
state 1, say action c, immediately implies that this
action is also optimal in state 2. In fact, if c is op-
timal in state 1, then r(3) > r(1) and r(3) > r(2)
� otherwise c would not be optimal in state 1. But
then, the action in state 2 should also be c.

set A) that varies along the state-space X . In particular, we are interested in
a learning algorithm that takes advantage of the metric structure in X to be
described next. Possible methods for this include kernel logistic regression [23],
beta regression [9] and others. We adopt the trivial extension of the latter to
the multi-class case due to the its computational e�ciency and the possibility of
including prior information.

At each state x ∈ X , the desired classi�er π̂ is simply a multinomial dis-
tribution over the set of possible actions. Using a standard Bayesian approach,
we compute a posterior distribution over each of the parameters of this multi-
nomial using the corresponding conjugate prior, the Dirichlet distribution. For
notational convenience, let us for the moment denote the parameters of the
multinomial at a state x ∈ X as a vector p(x) with ath component given by
pa(x). Using this notation, we want to estimate, for each x ∈ X , the posterior
distribution P [p(x) | D]. Let xi be some state observed in the demonstration D,
and let na(xi) denote the number of times that, in the demonstration, the action
a was observed in state xi. Finally, let n(xi) =

∑
a na(xi). We have

P [p(xi) | D] ∝ Multi(p1(xi),p2(xi), . . . ,p|A|(xi))Dir(α1, α2, . . . , α|A|)

=
n(xi)!∏

a∈A na(xi)!

∏
a∈A

pa(xi)
na 1

B(α)

∏
a∈A

pa(x)
αa−1

In other words, the posterior distribution of p(xi) is also a Dirichlet distribution
with parameters na + αa, a = 1, . . . , |A|. In order to generalize P [p(x) | D] to
unvisited states x ∈ X , and following the approach in [9], we assume that the
parameters of the Dirichlet distribution depend smoothly on x. From the metric
structure of X we de�ne a kernel on X , k(·, ·), and use standard kernel regres-
sion to extrapolate the parameters of the Dirichlet from the training dataset to
unvisited states [18]. Speci�cally, for any query point x∗ ∈ X and all a ∈ A, we
have

n̂a(x
∗) =

∑
i

k(x∗, xi)na(xi) + αa. (3)



Finally, the posterior mean of the distribution over the parameters p(x∗) � that
we will henceforth use as our classi�er at x∗, π̂(x∗, ·) � is given by

π̂(x∗, a) = E [pa(x
∗) | D] = n̂a(x

∗)∑
b n̂b(x

∗)
, (4)

for all a ∈ A. In the next section, we introduce our main contribution, proposing
a principled way to encapsulate the MDP structure in a suitable metric for X
that can then be used to de�ne the kernel k(·, ·).

We conclude by illustrating the performance of the algorithm above with a
simple metric in a problem of learning from demonstration in a grid-like world (a
more detailed description of the experimental setting is postponed to Section 5).
Figure 2 compares the performance of the algorithm against those of a random
policy and a policy obtained by solving the underlying MDP with a random
reward. Note that, even using a random reward, the MDP-based solution is able
to attain about a policy with 57% of correct actions, clearly establishing the
advantage of using the MDP structure.
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Fig. 2. Classi�cation rate of the
method above di�erent demonstration
sizes. The horizontal lines correspond
to the performances of a random
policy and a policy obtained from
the underlying MDP with a random
reward.

3.3 Bisimulation and MDP Metrics

Let us start by considering again the MDP depicted in Fig. 1. In this MDP, there
is a close relation between states 1 and 2 since their actions and corresponding
transitions are similar. In such a scenario, information about the policy, say, in
state 1 will typically be also useful in determining the policy in state 2.

This notion of �similarity� has recently been explored in the MDP literature
as a means to render solution methods for MDPs more e�cient [5,16,22]. In fact,
by identifying �similar� states in an MDP M, it may be possible to construct
a smaller MDP M′ that can more easily be solved. In this paper we instead
use MDP metrics to identify �similar� states and safely generalize the policy
observed in the demonstration.

As established in [7], �similarity� between MDP states is best captured by
the notion of bisimulation. Bisimulation is an equivalence relation ∼ on X in



which two states x and y are similar if r(x) = r(y) and

P [Xt+1 ∈ U | Xt = x,At = a] = P [Xt+1 ∈ U | Xt = y,At = a] ,

where U is some set in the partition induced by ∼. Lax bisimulation is an general-
ization of bisimulation that also accounts for action relabeling. Both bisimulation
and lax bisimulation led to the development of several MDP metrics in which,
if the distance between two states x, y is zero, then x ∼ y [5, 22]. In this paper
we adopt one such MDP metric, introduced in [22] and henceforth denoted as
δdMDP , that is built over an initial metric on X that we refer as the ground dis-

tance (see Appendix A for details). We point out, however, that this choice is
not unique.

While MDP metrics such as the one above were designed to improve e�-
ciency in MDP solution methods, in this paper we are interested in their use in
the problem of learning a policy from demonstration. In this context, MDP met-
rics arise as a natural way to �embed� the MDP structure in a supervised learning
algorithm to improve its generalization performance while avoiding solving mul-
tiple MDPs. As will soon become apparent from our results, the use of an MDP
metric indeed provides a signi�cant and consistent improvement in performance
over other metrics that ignore the MDP structure.

4 A Kernel-based Approach Using MDP Metrics

We now introduce the main contributions of the paper, namely how to use MDP
metrics such as the one discussed above to the particular problem considered in
this paper.

The �rst aspect to consider is that, when learning a policy from demonstra-
tion, there is no reward information. While most MDP metrics naturally include
a component that is reward-dependent, the particular setting considered here
implies that the metric used should not include one such term. Secondly, the
metric δdMDP used already implicitly provides the learning algorithm with the
necessary information on action relabeling. Therefore, in our algorithm we use
the kernel

k
(
(x, a), (y, b)

)
= exp

(
− δdMDP

((x, a), (y, b))/σ
)
,

where σ denotes the kernel bandwidth, and (3) and (4) become

n̂a(x
∗) =

∑
i,b

k
(
(x∗, a), (xi, b)

)
nb(xi) + αa, (5)

π̂(x∗, a) =
n̂a(x

∗)∑
b n̂b(x

∗)
. (6)

The complete algorithm is summarized in Algorithm 1.



Algorithm 1 MDP-induced Kernel Classi�cation.

Require: State-action space metric δdMDP ;
Require: Dataset D = {(xi, ai), i = 1, . . . , N};
1: Given a query point x∗,
2: for all a ∈ A do

3: Compute n̂a(x
∗) using (5)

4: end for

5: for all a ∈ A do

6: Compute π̂(x∗, a) using (6)
7: end for

8: return π̂;

4.1 Active Learning from Demonstration

The method described in Algorithm 1 is a Bayesian inference method. This
means, in particular, that the algorithms estimates a full posterior distribution
over the parameters p(x) of the policy (see Section 3.2). It is possible to use this
posterior distribution in a simple active sampling strategy that may lead to a
reduction in the sample complexity of our method [19].

One possibility is to compute the variance associated with the posterior dis-
tribution over the parameters p(x) at each state x ∈ X , choosing as the next
sample the state for which this variance is largest. The intuition behind this idea
is that states with larger variance correspond to states that were observed less
frequently and/or are distant (in our MDP metric sense) from more sampled
states.

Using this active learning strategy we can reduce the number of samples
required for learning, since more informative states will be chosen �rst. Note
also that this active learning approach implicitly takes into account the similarity
between the states, in a sense treating similar states as one �aggregated� state
and e�ectively requiring less samples.

5 Results

In this section we discuss several aspects concerning the performance of our
proposed approach. Our results feature demonstrations with signi�cantly less
samples than the size of the state-space of the underlying MDP, allowing for a
clearer evaluation of the generalization ability of the tested methods. Also, the
test scenarios used are typically not too large, to allow for an easier interpretation
of the results.

Our �rst test aims at verifying the general applicability of our approach. To
this purpose, we applied the algorithm in Section 3.2 using the MDP metric
described in Section 4 to 50 randomly generated MDPs. The state-space of the
MDPs varies between 20 and 60 states, and the action space between 4 and 10
actions. From each state, it is possible to transition to between 20% and 40%
of the other states. For each MDP, we randomly sample (without replacement)



half of the states in the MDP and provide the learning algorithm with a demon-
stration consisting of these states and the corresponding optimal actions.

We compare the performance of the algorithm in Section 3.2 when using
the MDP metric against the performance of that same algorithm when using
other metrics. In particular, we used the zero-one metric, in which each the
distance between any two state-action pairs (x, a) and (y, b) is either zero � if
(x, a) = (y, b) � or 1, and the transition distance, in which the distance between
any two state-action pairs (x, a) and (y, b) corresponds to the minimum number
of steps that an agent would take to move from state x to state y when taking
as a �rst action the action a. As for the MDP metric, we used the distance
δdMDP from the transition distance just described. The bandwidth of the kernel
was adjusted experimentally for each metric to optimize the performance. The
results are summarized in Table 1.

Table 1. Average performance over 50 random worlds with between 20 and 50 states
and 4 and 10 actions.

Correct Class. Rate (%)

Zero-one Distance 57.95± 4.33
Ground Distance 60.67± 5.10

δdMDP 73.92± 6.98

As is clear from the results above, our approach clearly outperforms all other
approaches, computing the correct action on 73% of the total number of states.
This establishes that, as expected, the use of the MDP metric indeed provides
an important boost in the performance of the method.

Our second test aims at comparing the performance of our approach against
that of IRL-based algorithm (namely, the algorithm in Section 3.1). We run
this comparison in two dimensions. We compare how both methods behave as
the size of the demonstration increases and as the noise in the demonstration
varies. For this comparison, we used a scenario consisting of eight weakly con-
nected clusters of nine states each, in a total of 72 states. Unlike more standard
grid-world scenarios, the weakly connected clusters of states imply that there
is a great asymmetry between the states in terms of transitions (unlike what
occurs in standard grid-world domains). For this MDP, we considered 5 actions,
corresponding to motions in the 4 directions, and the �NoOp� action.

We provided the algorithms with demonstrations of increasing size and eval-
uated the percentage of correct actions. As before, the demonstration was ob-
tained by sampling (without replacement) a percentage of the total number of
states and, for these, providing the corresponding optimal actions according to
the target policy. Figure 3(a) compares our approach with the gradient-based
IRL approach (GIRL). We also depict the performance of the supervised learning
method when using other metrics.
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Fig. 3. Classi�cation rate of the di�erent methods for (a) di�erent demonstration sizes;
(b) di�erent con�dence levels on the demonstration, with a demonstration size of alf
the number of states. The horizontal lines are the baseline references (see main text).
The results depicted are averaged over 50 independent Monte-Carlo trials, with the
error bars corresponding to sample standard deviation.

For interpretation purposes, we included in the �gure two baselines. The
lower is obtained by computing the average performance of a random policy
(≈ 30%). The second baseline is obtained by computing the average performance
of the optimal policy obtained from a random reward (≈ 57%). It is clear that,
because of the inherent MDP structure, the latter baseline is much higher. This
further strengthens our point on the use of MDP structure to attain higher
generalization.

The results show that all methods improve as the size of the demonstration
increases. For very small demonstrations, GIRL gives better results as its baseline
is higher. With a dataset larger than about 30% of the total number of states,
our method clearly outperforms all other up to a �full demonstration�, when all
kernel-based methods perform alike. We also note that the worse performance
GIRL even in large demonstrations is probably due to the existence of local
minima.5

Figure 3(b) compares the performance of all methods as the noise in the
demonstration varies. As in the �rst experiment, we used a demonstration of
half the total number of states in the MDP. The actions were sampled from
the distribution in (2) and the noise was adjusted by changing the value of the
con�dence parameter η. Low values of η correspond to noisy policies (where
many suboptimal actions are sampled) while high values of η correspond to
near-optimal policies. As expected all methods behave worse as the noise level
increases, approaching the baseline performance levels for high levels of noise. As
the noise decreases, the performance approaches the levels observed in Fig. 3(a).
We note, however, that the performance of the kernel-based methods su�ers a

5 The results shown contain only runs that did have an improvement from the initial
condition.
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Fig. 4. Classi�cation rate of the di�erent exploration methods with the size of the
demonstration (as a ration of the number of states). Left �gure optimal demonstrations,
Right �gure noisy demonstration

signi�cant improvement at a certain noise threshold (for η ≈ 1). We also note
that larger demonstrations allowing states to be sampled with replacement will
lead all methods to better �lter out the noise and improve the classi�cation rate.

Figure 4 shows the results of active learning for our method. We compare
several exploration techniques: random exploration - where states are sampled
uniformly, biased exploration - where state with less neighbor are chosen more
often, normalized sampling - where the sampling is based on a permutation of
all the states and our active learning approach based on the variance of the
parameters of the posterior distribution.

The �gure shows typical results that vary with the problem but have the
same relations between the methods. The obtained gain depend on the problem,
where problems with higher symmetries and states more clustered will yield and
higher gain of the active learning approach. From our results we saw that an
active learning approach was never worse than a permutation of states.

6 Concluding Remarks

It is clear from our results that the use of the MDP structure indeed provides
valuable information when tackling the problem of learning a policy from demon-
stration. This can be veri�ed easily by comparing, for example, the two baselines
in Fig. 2. In these results, using a random policy lead to a correct classi�cation
rate of around 30%. However, if we instead use a random reward function and
solve the corresponding MDP, the correct classi�cation rate goes up to 57%.
This clearly indicates that, in this particular example, the MDP structure signif-
icantly restricts the set of possible policies. Although these numbers correspond
to a rather small environment in which the set of policies is naturally small,
some preliminary experiments indicate that this conclusion holds in general (al-
though with di�erent numbers, of course). This conclusion is also supported by
the discussion in Section 3.1 about the results in [12].



A second remark is concerned with the computational complexity associated
with the particular MDP metric used in our results. As already pointed out
by [5], MDP metrics that rely on the Kantorovich metric to evaluate the distance
between two distributions P(x, a, ·) and P(y, b, ·) � such as the one used here �
are computationally demanding. There are other alternative metrics that can
be used (such as the total variation distance [5]) that are signi�cantly more
computationally e�cient and can thus alleviate this issue. Nevertheless, it is
worth pointing out that the MDP metric needs only to be computed once and
can then be applied to any demonstration. This point is particularly important
when envisioning, for example, robotic applications, since the MDP metric can
be computed o�ine, hard-coded into the robot and used to learn di�erent tasks
by demonstration to be able to adapt to di�erent users.

Another important point to make is that there are other methods that share
a similar principle to the gradient-based IRL method in Section 3.1 and used
for comparison in Section 5. These methods, while not explicitly concerned in
recovering a reward description of the demonstrated task, use nevertheless an
underlying MDP structure within a supervised learning or optimization set-
ting [2, 15, 20, 21, 24]. Unfortunately, these approaches are close to IRL-based
methods in that they still su�er from the need to solve multiple MDPs (see
also the discussion in [11] for a more detailed account of the similarities and
di�erences between the methods above). It is also worth noting that most afore-
mentioned methods are designed to run with signi�cantly larger datasets than
those used in the experiments [11]. In conclusion they share the same advantages
and disadvantages of the GIRL method in Section 3.2

Finally, we conclude by noting that there is no immediate (theoretical) di�-
culty in extending the ideas in this paper to continuous scenarios. We did not dis-
cuss this extension in the paper since MDP metrics in continuous MDPs require
a signi�cantly more evolved machinery to describe [6] that would unnecessarily
complicate the presentation. On the otherhand, although some continuous MDP
metrics have been identi�ed and shown to have good theoretical properties [6],
they are expensive to compute and no computationally e�ciently alternatives
are known. One important avenue for future research is precisely the identifying
continuous MDP metrics that are e�ciently computable.

A Description of a Lax-Bisimulation Metric

Let M = (X ,A,P, r, γ) be an MDP, where the state-space X is endowed with a dis-
tance d. In other words, (X , d) is a metric space, and we henceforth refer to d as the
ground distance. The function d can be any reasonable distance function on X , e.g., the
Manhattan distance in the environment of Fig. 1. Given one such distance d and any
two distributions p1 and p2 over X , the Kantorovich distance (also known as the earth



mover's distance) between p1 and p2 is de�ned as the value of the linear program

max
θx

∑
x

(
p1(x)− p2(x)

)
θx

s.t. θx − θy ≤ d(x, y), for all x, y ∈ X
0 ≤ θx ≤ 1 for all x ∈ X

and denoted as Kd(p1, p2). Now given any two state-action pairs (x, a) and (y, b), we
write

δd
(
(x, a), (y, b)

)
= k1|r(x)− r(y)|+ k2Kd

(
P(x, a, ·),P(y, b, ·)

)
(7)

where k1 and k2 are non-negative constants such that k1 + k2 ≤ 1. The function δd is,
in a sense, a �one-step distance� between (x, a) and (y, b). It measures how di�erent
(x, a) and (y, b) are in terms of immediate reward/next transition. In order to mea-
sure di�erences in terms of long-term behavior, we denote by Hd(U, V ) the Hausdor�
distance (associated with d) between two sets U and V ,6 and de�ne the MDP metric
dMDP as the �xed point of the operator F given by

F(d)(x, y) = Hδd({x} × A, {y} × A). (8)

As shown in [22], the metric dMDP can be obtained by iterating F and whenever
d(x, y) = 0 then x and y are lax-bisimulation equivalent. Also, using the metric dMDP

it is possible to relabel the actions at each state to match those of �nearby� states.

We conclude by noting that, as discussed in Section 4, in our results we use δdMDP

with k1 = 0 on the right-hand side of (7).
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