Internship project, master level, 2024

Evolving large populations of adaptive neural agents in ecologically plausible environments

**Supervision**: Clément Moulin-Frier and Gautier Hamon

**Research group**: Flowers team, Inria Bordeaux, France

**Duration**: 6 months, around February 2024 (with flexibility).

**Level**: Master 2 research internship

**Keywords**: Multi-agent systems, meta reinforcement learning, recurrent neural networks, simulation environments, eco-evolutionary dynamics, scientific programming on GPUs with Python.

**How to apply**: contact clement.moulin-frier@inria.fr; gautier.hamon@inria.fr; with a CV and letter of motivation, ideally by the end of November 2023. We also recommend sending documents or reports describing previous projects you have been working on (even if they are not directly related to the topic), as well as your grades and links to code repositories.

**Requirements**: We are looking for highly motivated MSc students (Master II). Programming skills and prior experience with Python and deep learning frameworks (e.g. Pytorch, JAX) are expected.
Context

There are striking differences in how adaptation operates in biological versus artificial systems. Reinforcement learning optimizes an action policy in order to maximize reward provided by the environment. In contrast, the natural world does not contain any explicit reward whatsoever: reward systems have instead evolved physiologically in biological organisms. Moreover, agent's training in RL relies on an episodic paradigm where the environment is reset to initial conditions at the start of each new episode. In contrast, natural environments are never reset: they are instead continuously modified by their inhabitants over many generations.

Those differences arise from the central assumption in AI that intelligence must be implemented in a structured cognitive architecture (integrating e.g. control, learning and memory) which is optimized (using machine learning methods) through pre-defined objective functions (Chollet, 2019; Silver et al., 2021). The performance of these architectures are then evaluated in benchmarks that quantitatively capture various aspects of intelligence (e.g. Chollet, 2019). In contrast, biological adaptation seems to be better characterized by the notion of open-endedness (the continual generation of increasingly diverse organisms and behaviors) than by performance (Stanley et al., 2017). An important paradigm shift is taking increasing importance in evolutionary biology, recognizing the crucial role of eco-evolutionary feedbacks as a main driver of evolution: Developing organisms are not solely products of evolution but, by modifying their niche and therefore its associated fitness landscape, are also causes of their own evolution and of others (Laland et al., 2015). Following a similar paradigm shift, a recent trend in AI is increasingly recognizing the importance of reciprocal influence between adaptation and environmental dynamics (Clune, 2020; Leibo et al., 2019; Moulin-Frier, 2022).

Project

In a recent paper (Hamon et al., 2023), we proposed to study the eco-evolutionary dynamics of non-episodic neuroevolution in large multi-agent environments, based on the following principles. Non-episodic learning: We prevent any environment or population reset during a simulation, which leads to continuous environmental and population dynamics. Bi-level adaptation mimicking the interplay between evolution and development: Agents' behavior is controlled by recurrent neural networks optimized through neuroevolution (Lehman & Miikkulainen, 2013), potentially enabling adaptation within the agent's lifetime in the absence of weight updates (in the spirit of meta reinforcement learning, Duan et al., 2016). Physiology-driven death and reproduction: There is no notion of rewards, agents are instead equipped with a physiological system modulating their energy level according to the resources they consume, surviving and reproducing as long as they are able to maintain this level within a reasonable range (i.e. no explicit notion of “survival of the fittest”, Brant & Stanley, 2020). Ecologically valid environment with complex intrinsic dynamics: We model our environment after common-pool resource (CPR) appropriation problems (Pérolat et al., 2017), where a group of agents competes for finite resources in the presence of multiple niches.
The objective of the proposed internship is to extend these preliminary experiments along several possible directions of research (with flexibility depending on the student's background and interest). These include:

- The use of indirect encoding of macro properties of the agents' neural networks using recent methods from neuroevolution (e.g. Najarro et al., 2023; Zuo et al., 2023), meta reinforcement learning (e.g. Duan et al., 2016) or transformer-based architectures.
- The implementation of a more complex ecologically plausible simulated environment with realistic physics, compositional dynamics (where resources can be combined together to create new ones, in the spirit of Minecraft, see also Bornemann et al., 2023 from our team), spatio-temporal variability (e.g. seasonal cycles) and multiple co-evolving species (e.g. prey-predator dynamics).
- Thorough qualitative and quantitative evaluation of the system dynamics, both at the macro level (characterizing eco-evolutionary dynamics in the system) and of the agent's evolved behavior, in particular in their ability to adapt during their lifetime (e.g. implementing a battery of test lab environments characterizing their generalization abilities in unknown situations).

References


Moulin-Frier, C. (2022). The Ecology of Open-Ended Skill Acquisition [Habilitation thesis (HDR, Université de Bordeaux (UB))]. https://hal.inria.fr/hal-03875448


