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Figure 1: The project aims at integrating a particule-based model of morphogenesis (A,
from Mordvintsev et al., 2022) with a genome model as nucleotide sequences (B, from Liard
et al., 2020) to study the self-organization of complex morphologies and behaviors (C,
from Vroomans and Colizzi, 2023).
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The fields of Computational Biology and Artificial Life both seek to simulate in silico
the fundamental principles of life (with a focus on ”life as we know it” in the former, vs.
”life as it could be” in the latter). This project aims at integrating computational models
from both fields to investigate how complex multicellular morphologies and behaviors can
evolve from gene-regulated cell replication, metabolism, and migration.

In both fields, Cellular Automata (CA) have proven to be a particularly relevant frame-
work for studying how complex macro-level forms can self-organize from simple local in-
teractions at the micro level (i.e., morphogenesis). For instance, the famous Game of Life
has been used to explore fundamental principles of autopoiesis (Beer, 2014), while the Cel-
lular Potts Model has been employed to investigate morphogenesis and the evolution of
multicellular organisms (Vroomans and Colizzi, 2023).

Novel classes of CA have been recently proposed in the Artificial Life community. Le-
nia (Chan, 2020) is a class of parametrizable CA that generalizes the Game of Life to
continuous multidimentional state spaces with parameterizable update fonctions operating
on an arbitrarily large neighborhood. It is able to generate a wide diversity of self-organizing
patterns, some of them ressembling artificial life forms (Hamon et al., 2024; Plantec et al.,
2023. Recently, Lenia has been extended to a particle-based framework (Particle Lenia,
Fig. 1.A), which we believe is particularly relevant to study the evolution and morphogen-
esis of multicellular organisms.

In parallel, contributions in Computational Biology have proposed detailed and realistic
models of the genome as nucleotide sequences characterized by potentially varying number
of genes, genetic architecture, and coding/non-coding sequence proportion (Fig. 1.B). Such
models can capture relevant features of the complexity and evolvability of the genotype-to-
phenotype mapping in biology (Liard et al., 2020). However, they have not yet been applied
to the morphogenesis of multicellular structures whose fitness depends on their resulting
form or function. Other contributions have instead focused on this latter aspect (Fig. 1.C),
but using less expressive models of the genotype-to-phenotype mapping.

The objective of this project is to integrate realistic models of genome rep-
resentations in a particle-based automata framework to study the evolution of
complex multicellular morphologies and behaviors (Fig. 1). For this aim, we will
formalize, implement and evaluate a computational model based on the following principles.

• Each cell is represented by a particle localized in space (see Mordvintsev et al., 2022;
Schoenholz and Cubuk, 2020, for related particle-based simulation frameworks).

• A cell has a genome, represented as a set of genes that encode information on their
phenotypic effects (as e.g. in Hindré et al., 2012; Liard et al., 2020).

• Gene (de)activation is regulated as a function of the cell state (as e.g. in Hintze et
al., 2024; Vroomans and Colizzi, 2023). The form and parameters of this activation
function is encoded in the gene.

• A gene encodes information specifying its phenotypic action on the cell when activated.
Depending on this information, the activation of a gene triggers either cell replication
(producing an identical daughter cell with small somatic mutations of its genome),
cell death, cell migration (driven by the minimization of an energy function, as in
Mordvintsev et al., 2022 or Schoenholz and Cubuk, 2020) or cell metabolism (the
modulation of the cell state according to the state of neighbor cells).
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We will first formalize this model and implement it, potentially using the JAX library
for its ability to perform efficient numerical computations on GPUs.

We will then study how we can optimize a single embryonic cell genome to give rise to
diverse morphologies (e.g. a segment, a star shape, etc), using evolutionary strategies as
black box optimization (see e.g. Steiner et al., 2008 for earlier attempts).

Then we will study optimization toward behaviors requiring multicellular coordination
(e.g. collecting or moving large elements of the environment). This might require more
advanced methods than mere optimization, e.g. based on diversity search (as e.g. in Hamon
et al., 2024).

Finally, if time allows, we will explore how to introduce builtin conservation laws in
the entire system (e.g. constant total mass or energy) and study the resulting ecosystem
dynamics of cell collectives cooperating or competing for shared resources (as in Plantec
et al., 2023; Vroomans and Colizzi, 2023).
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